

YASKAWA AC Drive Compact Vector Control Drive V1000

200 V CLASS, THREE-PHASE INPUT: 0.1 to 18.5 kW 200 V CLASS, SINGLE-PHASE INPUT: 0.1 to 3.7 kW 400 V CLASS, THREE-PHASE INPUT: 0.2 to 18.5 kW

Certified for ISO9001 and ISO14001

JQA-0422 JQA-EM0498

Bringing you the world's smallest* variable speed drive to stand at the top of its class: V1000

Yaskawa has built a reputation for high performance, functionality, quality, and reliability. To make it even easier to optimize your applications, we present the new V1000.

A single drive with so many uses, benefiting your application the more vou use it.

So advanced!

*: Results from market research on vector drives performed by Yaskawa

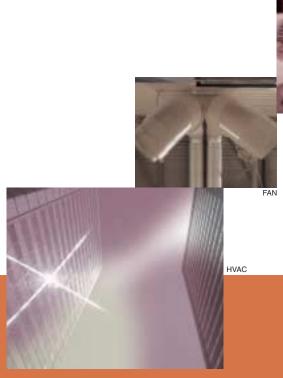
Quick and easy installation, ready to run your application in no time.

/ou'll be amazed how simple it is to use

ALM REV DRV FOUT DRUN C 00WARNING Risk of # Read menual before installing
 Wall 5 minutes for capacitor discharge after disconnecting power supply To conform to CC requirements, make sure to ground the supply renetal for 400V class Risque de décharge AVERTISSEMENT opens la coupore de l'altre pour permette la décharge des condemanteurs. Pour répondre sus engenoes C.C. a assurér que resultre poir que la série 4000

op performance for its class. Loaded with functions and features in an unbelievably small package!

E



RoHS

compliant

CONTENTS

Features	4	
Application Benefits	8	
Software Functions	10	
Parameter List	12	
Basic Instructions	16	
Product Lineup	18	
Model Selection	19	
Standard Specifications	20	
Standard Connection Diagram	22	
Dimensions	24	
Fully-Enclosed Design	26	
Peripheral Devices and Options	28	
Application Notes	50	
YASKAWA AC Drive Series	55	
Global Service Network	57	

FLUID MACHINE See page 8.

APPLICATIONS

COMPACT CONVEYOR See page 9.

PACKAGING

PUMF

Even more eye-opening versatility.

Delivering the most advanced,

Features

Yaskawa offers solutions customized for your application in an incredibly compact, technologically advanced, environmentally responsible package capable of driving a synchronous motor.

So advanced!

Sensorless Control of PM Motors Capability

Two drives in one

V1000 runs not only induction motors, but synchronous motors like IPM and SPM motors as well. Get a single drive for all your application needs, and save on spare parts.

Note: See product specifications for information on motor precision The variable torque ratio of synchronous motors is 1 to 10.

Torque (%) 0 3Hz 60Hz 1Hz Hz 12Hz 30Hz Conventional models -100 -200 duction motor 9 30 90 3 6 60 Frequency (Hz) Standard Drive Increased braking power during deceleration. Faster deceleration time with overexcitation braking.* *: Example shown is for a 400 V 3.7 kW drive without braking resistor. Circumstances depends on the motor and load SPM motor Normal Deceleration (SMRA series) SPM motor Drive DC voltage IPM motor (SSR1 series) Output frequency IPM motor Drive 1275 Output current V1000 Induction motor **Overexcitation Deceleration** DC voltage SPM motor Output frequency EMR1 series 6.4 s SMRD series Standard Drive SMRA series Output current IPM motor (SSR1 series) 50% faster!

Top of Its Class

200

100

Impressive Torque Characteristics

V1000 is the first in its class fully equipped with current vector control. Current Vector control providing a powerful starting torque of 200% at 0.5 Hz* and precise torque limit operations. The motor Auto-Tuning function saves valuable start up time and assures high performance operation at the highest efficiency. *: Using a Yaskawa induction motor under 3.7 kW set for Heavy Duty torque performance.

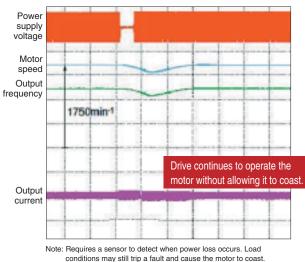
simplest, smallest drive of its class.

No more trouble from power loss.

V1000 is fully equipped with speed search and KEB Ride-Thru functions for your application needs, whether running an induction motor or permanent magnet motor.

Speed Search Method

Power supply voltage


Easily restart the motor without cumbersome speed sensors. Perfect for fan, blowers, and other rotating, fluid-type applications.

Motor speed Output frequency 1750min⁻¹ 1750min⁻¹ Suppresses current for a fast, smooth start

Speed Search performs smooth restart by finding the coasting motors speed.

KEB Ride-Thru

Drive continues operation by using motor regen. Perfect for HVAC

Drive Specialization

Software for High-Frequency Output

Yaskawa can offer you a drive with custom software with the specific functions required for your machine.

Customize the Drive

Optional visual programming software lets you instantly customize V1000 to your application. Let the drive do external device or PLC functions! Easy Drag and Drop functions starting from simple timers up to complex application blocks let you create your very own drive.

So much variation possible

Global Networking

The built in high speed RS-422/485 MEMOBUS and a variety of option units connect V1000 to all popular fieldbus networks. The optional 24 V power supply keeps the drive controller alive under all conditions, providing network communications and monitoring functions even during a main power loss.

	MECHATROLINK-II	MECHATROLINK-III*				
~	CC-Link					
id orl	DeviceNet					
Open Field letwork	CompoNet					
0 ° ž	PROFIBUS-DP					
	CANopen					
: Available soor	n ield network names mentioned ar	re registered				
	of their respective companies.	e registered				

Specialized Types

* N

Finless design, and dust-proof models also available.

Environmentally Friendly

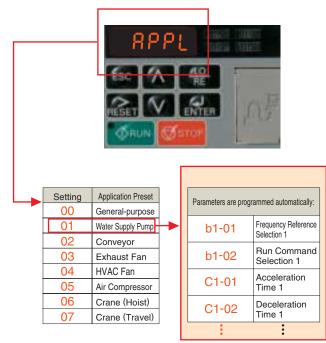
Protecting Against Harsh Environments

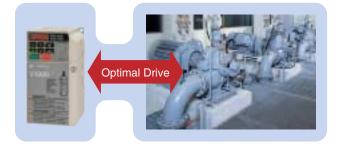
Various products are available to protect your drive against humidity, dust, oil mist, and vibration. Contact Yaskawa for more information.

EU's RoHS Compliance

All V1000 models are fully compliant with the EU's RoHS initiative.

Features


From setup to maintenance, V1000 makes life easy.



Parameters set automatically—hassle free programming!

Start up instantly with application presets!

V1000 automatically sets the parameters needed for various applications. Presets for water supply pumps, conveyor systems, exhaust fans, and other applications program the drive instantly for optimized performance—saving enormous hassle setting up for a test run.

Breeze-Easy Setup

Install Multiple Drive Immediately with the USB Copy Unit

Get several drives up and running easily using the USB copy unit. The same copy unit is fully PC compatible.

Hassle free setting and maintenance straight from a PC

DriveWizard Plus lets you manage the unique settings for all your drives right on your PC.

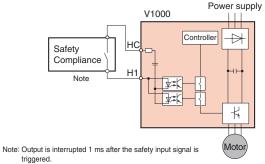
With DriveWizard's preset operation sequences, built-in oscilloscope function, fine tuning the drive and maintenance checks have never been easier.

Sequence Operation

• Drive Replacement Function Saves valuable time during drive set up when replacing or upgrading drives.

• Oscilloscope Function Displays operation status and drive performance in real time.

View and edit drive parameters.



Safety Standard Compliance

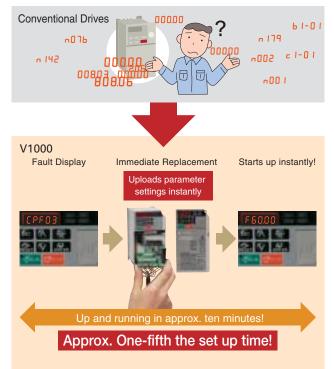
TÜV approved

V1000 is the first drive in its class to come standard with safety input features compliant with ISO13849-1 Cat.3 PLd, IEC/EN61508 SIL2.

Through compliance with EN60204-1 (stop category 0), V1000 reduces the number of peripheral devices needed to satisfy safety regulations.

Make sure safety input wiring does not exceed 30 m.

Application Example: Safety Compliance


Note: If the last drive in a series is installed next to a wall, a 30 mm gap is required.

technology in the smallest package.

Hassle-Free Maintenance

Less Downtime

The first-ever pluggable terminal board with a Parameter Back-Up function lets you replace a drive instantly in the event of failure. No need to reprogram the replacement drive—an amazingly convenient time saver!

Exceptional Performance Life

Cooling fan and capacitors have an expected performance life of ten years. In addition, Maintenance Monitors keep track of part wear.

Note: Assumes operation conditions of 40°C, 80% rated load, and 24 hour continuous performance. Performance life may vary with operation conditions.

Simple Wiring

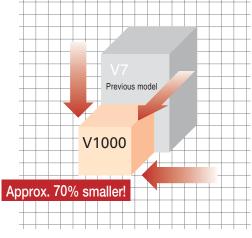
A pluggable terminal block option is available. Screwless terminals do away with time consuming wiring and periodic maintenance to check wire connections, which in turn makes the drive more reliable. Contact Yaskawa for inquires.

Wide Array of Monitors

Monitor functions like output frequency, output current, I/O status and watt hour counter give a clear picture of the drive operation status and helps to keep track of the energy consumption.

Verify Menu

The Verify Menu lists all setting that have been changed from their original default values. This includes parameters changed by Auto-Tuning, Application Presets, and those edited by the technician. This list makes it easy to reference changes to drive setup.

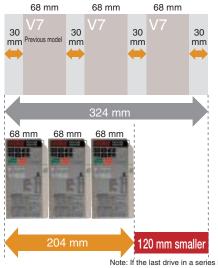

The world's smallest!

The perfect space-saving design

World's Smallest Class

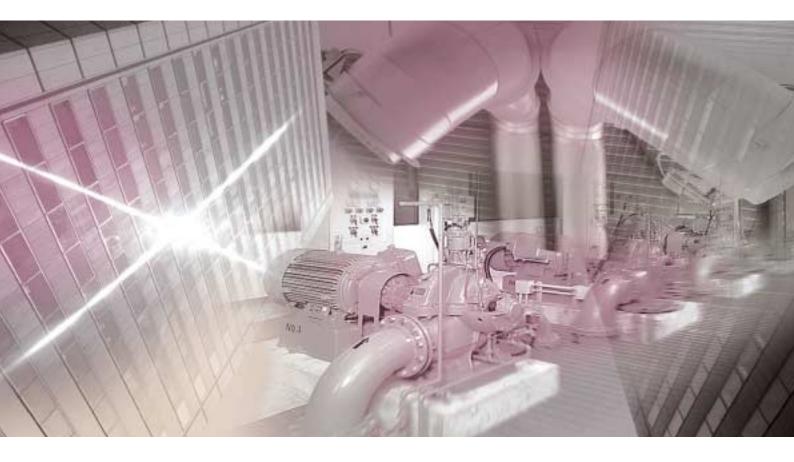
Yaskawa has applied the most advanced thermal simulation technology and top reliability to create the world's smallest compact drive. V1000 reduces the space required up to 70% when compared to our earlier models.

•Compare the size difference of a 200 V 5.5 kW drive with V1000 rated for Normal Duty operation:

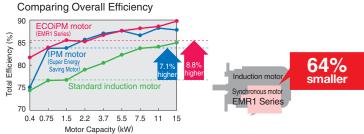


Side-by-Side

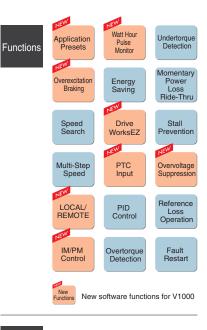
V1000 allows for a truly compact installation, requiring minimal space between units even in a tight enclosure.

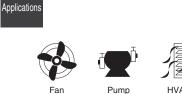

Note: Current derating must be considered.

•Example: Side-by-Side installation of 200 V 0.75 kW units



V1000 gets the most out of the application.


Fluid Applications

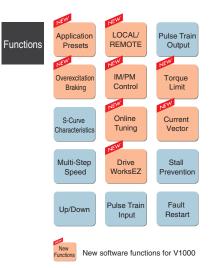

- Selecting "Fan" or "Pump" presets automatically programs V1000 for optimal performance.
- Compact design saves installation space. Use a permanent 2 magnet motor to shrink the installation even further while conserving impressive amounts of energy.

Pulse output provided to keep track of kilowatt hours-- no power meter needed. (Cannot legally be used as proof of power consumption.)

- Speed Search prevents loss from down time by keeping the application running smoothly through a power loss.
- An optional 24 V power supply lets you monitor drive performance from a PLC even when the power goes out.
 - Replace drives immediately and easily thanks to a pluggable terminal board with a built-in Parameter Back-Up function.

8

6


Advantages

Conveyor, Transport, and Civil Applications

Advantages

- Selecting the "Conveyor" preset automatically programs V1000 for optimal performance.
- 2 Safety input functions standard. Easily complies with various safety regulations.
- **3** Overexcitation braking provides more powerful braking capabilities.
- 4 Easily customize the drive through visual programming with DriveWorksEZ.
- 5 With a variety of communication protocols options available, V1000 can be networked instantly. A separate 24 V power supply is also available, allowing the technician to monitor drive performance from a PLC even when the power goes out.
- 6 IP66 and NEMA 4 Type 1 models are available. Provides water-proof and dust-proof protection and separate installation.

Software Functions

Loaded with software functions just right for your application.

Note: Major functions listed below

Application Presets

No need to struggle with difficult parameters and complex calculations. Parameters are set instantly simply by selecting the appropriate Application Preset.

Functions at Start and Stop

Optimal deceleration without

needing to set the deceleration time. Drive slows the application smoothly controlling DC bus voltage.

Perfect for applications with high load inertia that rarely need to be stopped.

Stop quickly—50% faster without the use of a braking resistor. Note: Stopping times may vary based on motor characteristics.

Halt a coasting motor and start it back up again.

When the direction of a coasting motor is unknown, the drive automatically performs DC Injection to bring the motor to a halt and then start it back up again.

Start a coasting motor.

Automatically brings a coasting motor back to the target frequency without the need for extra speed sensors.

Accelerate and decelerate

smoothly with large inertia loads. Drive prevents speed loss by holding the output frequency at a constant level during acceleration and deceleration.

Switch easily between accel/decel times. Switch acceleration and deceleration rates when running two motors from the same drive, or change accel/decel times when operating at high speed.

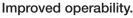
Prevent sudden shock when starting and stopping the application.

Drive lets the user fine-tune the S-curve characteristics, allowing for smooth acceleration and deceleration.

Reference Functions

Limit motor speed.

Set speed limits and eliminate the need for extra peripheral devices and extraneous hardware.

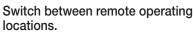

Easily program a speed sequence with multiple steps.

Set up to 17 separate speeds to create a speed sequence for the application. The drive can easily be connected to a PLC and allow for a simple positioning with limit switches.

Skip over troublesome resonant frequencies.

Drive can be programmed to avoid machine resonance problems by avoiding constant speed operation at certain speeds.

Momentarily hold the operating frequency during acceleration or deceleration as the load is lowered or raised.


Frequency

Reference Hold

Improved operability.

Raise or lower the frequency reference using a remote switch.

Easily switch between controlling the drive directly with the keypad or from a control panel at some remote location.

Functions for Top Performance

Run both IM and PM motors with a single drive.

The most advanced motor drive technology can run both IM and PM motors, allowing for even greater energy savings and a more compact setup.

No extra watt hour meter needed.

Automatically runs at top efficiency.

The drive supplies voltage to the motor relative to the speed and load so that the application is for operating at the most efficient level.

Current Vector

Enables high-precision operation.

Automatically adjusts resistance between motor conductors during operation, thus improving speed accuracy when there are motor temperature fluctuations. This function is active only for Open Loop Vector Control.

Achieve high levels of performance.

The drive comes with current vector control capabilities for high performance applications.

Customize the perfect drive to fit your needs.

Upper controller circuitry and drive I/O terminals can be programmed so that extra hardware is no longer needed. Dragand-drop visual programming makes customization a breeze.

No need for extra hardware. Control timing by opening and closing the

output signal relative to the input signal.

Thermal protection provided by a PTC located in the motor windings. Protect the motor from over heat by di-

rectly connecting the PTC to the drive.

Automatic PID control.

The internal PID controller fine-adjusts the output frequency for precise control of pressure, flow or other process parameters.

One drive runs two motors.

Use a single drive to operate two different motors. (Only one PM motor may be used)

Improved operability.

Use the Pulse Train Input to control not only the frequency reference, but also PID feedback and PID input.

Pulse Train Output

Improved monitor functions.

Pulse output lets the user observe everything from the frequency reference and output frequency to motor speed, softstart output frequency, PID feedback, and PID input.

Use frequency detection for brake control.

The drive can output a signal when the output frequency exceeds a specified level.

Overtorque Detection

Frequency Detection

Keep the application running while protecting connected machinery. Overtorque detection senses motor torque and notifies the user immediately when a

and notifies the user immediately when a filter clogs or the machine is blocked by mechanical problems.

Better reliability: Keep the application running while protecting the load. Fault detection senses any drop in motor torque due to broken belts or worn transmission.

Better reliability: Keep the application running while protecting the load. V1000 helps protect your application by restricting the amount of torque the motor can create.

Protective Functions

Keep running even during a momentary loss in power.

V1000 automatically restarts the motor and keeps the application going in the event of a power loss.

Decelerate to stop when the power goes out.

V1000 uses regenerative energy from the motor to bring the application to a stop, rather than simply letting it coast.

Better reliability: Keep the application running while protecting the load.

Keeps the machine running by preventing motor stall caused by motor overload or rapid speed changes.

Avoid overvoltage trip.

Effective for punching presses and crank shafts where repetitive motion creates large amounts of regenerative energy. The drive increases or decreases the frequency in correspondence with regen levels to prevent overvoltage from occurring.

Better reliability for continuous operation.

The drive can keep running at the most recent frequency reference it was given in the event that the upper controller should fail. An absolute must for HVAC systems.

Keep running when a fault occurs. V1000 has full self-diagnostic features and can restart the application in the event of a fault. Up to 10 restarts possible.

The following code is used to indicate whether a parameter is available in a certain control mode or not. S: Available in the Setup Mode and the Parameter Setting Mode. O: Available in the Parameter Setting Mode. ×: Not available in this control mode

Refer to V1000 Technical Manual for details.

ion					Cor	ntrol M	lode	ion					Cor	trol M	ode
Function	No.	Name	Range	Def*1	V/f	OLV	PM	Functior	No.	Name	Range	Def*1	V/f	OLV	PM
		Language Selection	0 to 7	*1	0	0	0		b5-20	PID Setpoint Scaling	0 to 3	1	0	0	0
Parameters		Access Level Selection	0 to 2	2	0	0	0		b5-34	PID Output Lower Limit	-100.0 to 100.0	0.0%	0	0	0
araı		Control Method Selection	0,2,5	0	S	S	S		b5-35	PID Input Limit	0 to 1000.0	1000.0%	0	0	0
		Initialize Parameters	0 to 5550	0	0	0	0		b5-36	PID Feedback High Detection Level	0 to 100	100%	0	0	0
atio	A1-04	Password 1 Password 2	0 to 9999 0 to 9999	0	0	0	0	Control	b5-37	PID Feedback High Level Detection Time	0.0 to 25.5	1.0 s	0	0	0
Initialization		Application Preset	0 to 8	0	0	0	0	ပိ	b5-38	PID Setpoint / User Display	1 to 60000	dep. on	0	0	0
liti		DriveWorksEZ Function Selection	0 to 0	0	0	ŏ	Õ	E	b5-39	PID Setpoint Display Digits	0 to 3	drive capacity	0	0	0
	A2-01 to		b1-01 to	-				1"		Frequency Reference Monitor			-	_	
User Parameters	A2-32	User Parameters, 1 to 32	o2-08	_	0	0	0		b5-40	Content during PID	0,1	0	0	0	0
Para	A2-33	User Parameter Automatic Selection	0,1	1	0	0	0		b5-47	Reverse Operation Selection 2	0,1	1	0	0	0
	b1-01	Frequency Reference Selection 1	0 to 4	1	S	S	S		00-47	by PID Output	,				
Selection		Run Command Selection 1	0 to 3	1	S	S	S		b6-01	Dwell Reference at Start	0.0 to 400.0		0	0	0
ect		Stopping Method Selection	0 to 3	0	S	S	S	Dwell	5 b6-02	Dwell Time at Start	0.0 to 10.0	0.0 s	0	0	0
	b1-04	Reverse Operation Selection	0,1	0	0	0	0		b6-03	Dwell Frequency at Stop	0.0 to 400.0		0	0	0
Operation Mode	b1-07	LOCAL/REMOTE Run Selection	0,1	0	0	0	0		b6-04 b8-01	Dwell Time at Stop	0.0 to 10.0 0,1	0.0 s 0	0	0	○ ×
Ĭ	b1-08	Run Command Selection while in Programming Mode	0 to 2	0	0	0	0			Energy Saving Control Selection Energy Saving Gain	0.0 to 10.0	0.7	×	0	×
ion	b1-14	Phase Order Selection	0,1	0	0	0	0	Saving	00-02	Energy Saving Control Filter	0.00 to 10.0				
erat		Frequency Reference 2	0 to 4	0	0	ŏ	ŏ	Sav	b8-03	Time Constant	10.00	0.50	×	0	×
ð		Run Command Source 2	0 to 3	0	Õ	Ō	Õ			Energy Saving Coefficient	0.00 to	dep. on drive			
	b1-17	Run Command at Power Up	0,1	0	0	0	0	Energy	b8-04	Value	655.00	drive capacity	0	×	×
	b2-01	DC Injection Braking Start Frequency	0.0 to 10.0	0.5 Hz	0	0	0	<u>ت</u>	b8-05	Power Detection Filter Time	0 to 2000	20 ms	0	×	×
Braking	b2-02	DC Injection Braking Current	0 to 75	50%	0	0	0		b8-06	Search Operation Voltage Limit	0 to 100	0%	0	×	×
Bral	b2-03	DC Injection Braking Time/DC	0.00 to	0.00 s	0	0	0		C1-01	Acceleration Time 1			S	S	S
u u		Excitation Time at Start	10.00					ဖ	C1-02	Deceleration Time 1			S	S	S
DC Injection		DC Injection Braking Time at Stop	0.00 to 10.00	0.50 s	0	0	×	, E	C1-03	Acceleration Time 2			0	0	0
Ē		Magnetic Flux Compensation Capacity	0 to 1000	0%	×	0	×		C1-04				0	0	0
8		Short Circuit Brake Time at Start	0.00 to 25.50	0.00 s	×	×	0	tio	C1-05	Acceleration Time 3			0	0	0
		Short Circuit Brake Time at Stop	0.00 to 25.50	0.50 s	×	×	0	Deceleration Times		(Motor 2 Accel Time 1)	0.0 to	10.0 s			
	b3-01 b3-02	Speed Search Selection Speed Search Deactivation Current	0,1 0 to 200	0 120	0	0	0 ×	e e	C1-06	Deceleration Time 3 (Motor 2 Decel Time 1)	6000.0*4		0	0	0
	b3-02	Speed Search Deceleration Time	0.1 to 10.0	2.0 s	0	0	×	Ľ۵		Acceleration Time 4					
		Speed Search Delay Time	0.0 to 100.0	0.2 s	0	0	Ô	pu	C1-07	(Motor 2 Accel Time 2)			0	0	0
		Output Current 1 during		dep. on	_			L L L		Deceleration Time 4				-	
	b3-06	Speed Search	0.0 to 2.0	drive capacity	0	0	×	Acceleration and	C1-08	(Motor 2 Decel Time 2)			0	0	0
	h0 10	Speed Search Detection	1.00 to 1.20					er l	C1-09	Fast-Stop Time	0.0 to 6000.0*4	10.0 s	0	0	0
Search	b3-10	Compensation Gain	1.00 to 1.20	1.05	0	0	×	l ö	C1-10	Accel/Decel Time Setting Units	0.1	1	0	0	0
Se	b3-14	Bi-Directional Speed Search	0,1	0	0	0	×	∣∢	C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0		0	0	0
Speed	50 14	Selection	0,1	Ŭ					C1-14		0.0 to 400.0		0	0	0
be	b3-17	Speed Search Restart	0 to 200	150%	0	0	×	S-Curve Characteristics	3 C2-01	S-Curve Characteristic at Accel Start	0.00 to 10.00		0	0	0
"	-	Current Level						Curv	C2-02	S-Curve Characteristic at Accel End		0.20 s	0	0	0
	b3-18	Speed Search Restart Detection Time	0.00 to 1.00	0.10 s	0	0	×	s a	C2-03 C2-04	S-Curve Characteristic at Decel Start S-Curve Characteristic at Decel End		0.20 s 0.00 s	0	0	0
	b3-19	Number of Speed Search Restarts	0 to 10	3	0	0	×		C3-01	Slip Compensation Gain	0.0 to 2.5	0.00 s	$\overline{0}$	0	×
		Speed Search Method Selection	0,1	0	0	0	X	Compensation	C3-02			2000 ms	0	0	×
	b3-25	Speed Search Retry Interval Time	0.0 to 30.0	0.5 s	Õ	Ŏ	0	ens	C3-03		0 to 250	200%	Õ	Õ	×
	b3-29	Speed Search Induced Voltage Level	0 to 10	10%	×	×	0	du		Slip Compensation Selection				_	
rtion	b4-01	Timer Function On-Delay Time	0.0 to 300.0	0.0 s	0	0	0	Ŭ	C3-04	during Regeneration	0,1	0	0	0	×
μË	b4-02	Timer Function Off-Delay Time	0.0 to 300.0	0.0 s	0	0	0	SI	C3-05	Output Voltage Limit Operation Selection	0,1	0	×	0	×
		PID Function Setting	0 to 4	0	0	0	0		C4-01	Torque Compensation Gain	0.00 to 2.50	1.00	0	0	0
		Proportional Gain Setting (P)	0.00 to 25.00	1.00	0	0	0	Torque	5 C4-02	Torque Compensation Primary Delay Time		200 ms	0	0	0
		Integral Time Setting (I)	0.0 to 360.0	1.0 s	0	0	0	ne	C4-03		0.0 to 200.0	0.0%	×	0	×
		Integral Limit Setting	0.0 to 100.0	100.0%	0	0	0	Tord	C4-04			0.0%	×	0	×
		Derivative Time (D)	0.00 to 10.00		0	0	0	- 2	C4-05			10 ms	×	0	×
		PID Output Limit PID Offset Adjustment	0.0 to 100.0 -100.0 to +100.0	100.0%	0	0	0		C4-06	Torque Compensation Primary Delay Time 2	0 to 10000	150 ms	×	0	×
		PID Primary Delay Time Constant	0.00 to 10.00	0.00 /s	0	0	0	-	C5-01	ASR Proportional Gain 1	0.00 to 300.00	0.20	0	×	×
_		PID Output Level Selection	0.00 10 10.00	0.00 S	0	0	0	Speed Control	C5-02	ASR Integral Time 1	0.000 to 300.00	0.20	0	×	×
Control		PID Output Gain Setting	0.00 to 25.00	1.00	0	0	0	ပိုင်	C5-03	ASR Proportional Gain 2	0.00 to 300.00	0.200	0	X	×
2 V		PID Output Reverse Selection	0,1	0	0	Ō	Õ	eed	C5-04	ASR Integral Time 2	0.000 to 10.000		Õ	×	×
D GIA		PID Feedback Reference						g	C5-05	ASR Limit	0.0 to 20.0	5.0%	Õ	×	×
	b5-12	Missing Detection Selection	0 to 5	0	0	0	0		C6-01		0,1	1	S	S	S
	b5-13	PID Feedback Loss Detection Level	0 to 100	0%	0	0	0				1 to B,F		S	S	S
	b5-14	PID Feedback Loss Detection	0.0 to 25.5	1.0 s	0	0	0	Carrier	C6-03	Carrier Frequency Upper Limit	1.0 to 15.0	dep. on	0	0	0
		Time						Ŭ Å	C6-04	Carrier Frequency Lower Limit	0.4 to 15.0	drive capacity	0	×	×
		PID Sleep Function Start Level			0	0	0		C6-05	Carrier Frequency Proportional Gain	00 to 99		0	×	×
		PID Sleep Delay Time	0.0 to 25.5	0.0 s	0	0	0	59	d1-01	Frequency Reference 1			S	S	S
		PID Accel/Decel Time	0 to 255	0 s	0	0	0	Inen	d1-02	Frequency Reference 2	0.00 to	0.00	S	S	S
		PID Setpoint Selection	0,1	0	0	0	0	Frequency	d1-03	Frequency Reference 3	400.00	Hz	S	S	S
	05-19	PID Setpoint Value	0.00 to 100.00	v.00%	0	0	0		d1-04	Frequency Reference 4			S	S	S

*1: Default setting depends on the control mode.

*2: Parameter setting value is not reset to the default value during drive initialization, A1-03 = 1110, 2220, 3330.
*3: Parameter A1-05 is hidden from view. To display A1-05, access parameter A1-04 and simultaneously depress the STOP key and the Up arrow key.
*4: The accel/decel time setting range determines the value of the units set to C1-10.
Note: For software version PRG: 1021 or later. Verify the software version by checking either the nameplate on the drive or parameter U1-25.

Bo. Name Range Def** VI OLV PM 01-05 Frequency Reference 5 0.00	on					Cor	ntrol M	ode
01-06 Frequency Reference 6 d1-08 0 <t< th=""><th>Function</th><th>No.</th><th>Name</th><th>Range</th><th>Def*1</th><th>V/f</th><th>OLV</th><th>PM</th></t<>	Function	No.	Name	Range	Def*1	V/f	OLV	PM
999 01-07 Frequency Reference 7 (1-10) 0.00 to (1-10) 0.00 to (1-110) <			Frequency Reference 5			0	0	0
Bit - Bit Frequency Reference Bit - Frequency Reference 10 0.00 to 0.00 to		d1-06	Frequency Reference 6			0	0	0
Image: state of the s	6	d1-07	Frequency Reference 7			0	0	0
Image: state of the s	l õ	d1-08	Frequency Reference 8			0	0	0
Image: state of the s	ere	d1-09	Frequency Reference 9			0	0	0
Image: state of the s	fefe	d1-10	Frequency Reference 10	0.00 to	0.00	0	0	0
Image: state of the s	L T	d1-11	Frequency Reference 11	400.00	Hz	0	0	0
Image: state of the s	Lo Lo	d1-12				0	0	0
Image: state of the s	nt l	d1-13	Frequency Reference 13	1		0	0	0
Image: state of the s	l e	d1-14				0	0	0
d1-17 Jog Frequency Reference 000 to 40000 6.00 Hz S S S d2-01 Frequency Reference Loyer Limit (0.0 to 110.0 (0.0%) 0	<u>۳</u>	d1-15				0	0	0
Big of all of the second sec		d1-16	Frequency Reference 16	1		0	0	0
Big market Q2-01 Frequency Reference Lower Limit (0.0 to 110.0 0.0% ○ ○ Q2-02 Frequency Reference Lower Limit (0.0 to 110.0 0.0% ○ ○ Q3-03 Master Speed Reference Lower Limit (0.0 to 110.0 0.0% ○ ○ Q3-04 Jump Frequency 2 0.0 to 400.0 0.0 Hz ○ ○ Q3-04 Jump Frequency 2 0.0 to 400.0 0.0 Hz ○ ○ Q3-04 Jump Frequency Reference Bias 0.00 to 0.00 ○ ○ Q4-04 Frequency Reference Bias 0.1 0 ○ ○ Q4-05 Frequency Reference Bias 0.1 0 ○ ○ Q4-06 Frequency Reference Bias 0.1 0.0% ○ ○ Q4-07 Raido Frequency Reference Bias 0.01 0.0% ○ ○ Q4-08 Frequency Reference Bias 0.0 0 ○ ○ ○ Q4-09 Frequency Reference Bias 0.0 0 ○ ○ ○<		d1-17	Jog Frequency Reference	0.00 to 400.00	6.00 Hz	S	S	S
Object G3:01 Jump Frequency 1 0.010 400.0 0.0 Hz 0 0 G3:02 Jump Frequency 3 0.010 400.0 0.0 Hz 0 0 G4:03 Jump Frequency 3 0.010 400.0 0.0 Hz 0 0 G4:04 Jump Frequency Reference Hold 0.1 0 0 0 G4:04 Frequency Reference Bias 0.01 0 0 0 0 G4:05 Frequency Reference Bias -99.10 0.0% 0 0 0 G4:06 Frequency Reference Bias -99.10 0.0% 0	pper	d2-01		0.0 to 110.0	100.0%	0	0	0
Object G3:01 Jump Frequency 1 0.010 400.0 0.0 Hz 0 0 G3:02 Jump Frequency 3 0.010 400.0 0.0 Hz 0 0 G4:03 Jump Frequency 3 0.010 400.0 0.0 Hz 0 0 G4:04 Jump Frequency Reference Hold 0.1 0 0 0 G4:04 Frequency Reference Bias 0.01 0 0 0 0 G4:05 Frequency Reference Bias -99.10 0.0% 0 0 0 G4:06 Frequency Reference Bias -99.10 0.0% 0	wer L	d2-02	Frequency Reference Lower Limit	0.0 to 110.0	0.0%	0	0	0
Object G3:01 Jump Frequency 1 0.010 400.0 0.0 Hz 0 0 G3:02 Jump Frequency 3 0.010 400.0 0.0 Hz 0 0 G4:03 Jump Frequency 3 0.010 400.0 0.0 Hz 0 0 G4:04 Jump Frequency Reference Hold 0.1 0 0 0 G4:04 Frequency Reference Bias 0.01 0 0 0 0 G4:05 Frequency Reference Bias -99.10 0.0% 0 0 0 G4:06 Frequency Reference Bias -99.10 0.0% 0	Freque	d2-03		0.0 to 110.0	0.0%	0	0	0
01-00-00 0.00		d3-01		0.0 to 400.0	0.0 Hz	0	0	0
Bit Ore Offequency Reference Hold Function Selection 0,1 0 0 0 d4-01 Frequency Reference Bias Step (Up/Down 2) 0,01 0 0 0 0 d4-03 Frequency Reference Bias Acce//Decel (Up/Down 2) 0,1 0 0 0 0 d4-04 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 0 0 0 d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -99.9 to -100.0 1.0% 0 0 0 0 d4-06 Frequency Reference Bias Prequency Reference Bias 0.0 to Up/Down Frequency Reference Bias 0.0 to Up/Down Frequency 1 -100.0 100.0% 0 0 0 0 0 d4-10 Offset Frequency 1 -100.0 b+1000 0.0% 0<	end	d3-02		0.0 to 400.0	0.0 Hz	0	0	0
Bit Ore Offequency Reference Hold Function Selection 0,1 0 0 0 d4-01 Frequency Reference Bias Step (Up/Down 2) 0,01 0 0 0 0 d4-03 Frequency Reference Bias Acce//Decel (Up/Down 2) 0,1 0 0 0 0 d4-04 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 0 0 0 d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -99.9 to -100.0 1.0% 0 0 0 0 d4-06 Frequency Reference Bias Prequency Reference Bias 0.0 to Up/Down Frequency Reference Bias 0.0 to Up/Down Frequency 1 -100.0 100.0% 0 0 0 0 0 d4-10 Offset Frequency 1 -100.0 b+1000 0.0% 0<	nbe	d3-03				0	0	0
d4-01 Frequency Reference Hold Function Selection 0,1 0 0 0 d4-03 Frequency Reference Bias Accel/Decel (Up/Down 2) 99.99 Hz 0 0 d4-04 Frequency Reference Bias Accel/Decel (Up/Down 2) 0,1 0 0 0 d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 0 0 0 d4-06 Frequency Reference Bias Upper Limit (Up/Down 2) 0.01 0.0% 0	Ĕ					0	0	0
d4-01 Function Selection 0,1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
44-03 Step (Up/Down 2) 49.99 99.99		d4-01		0,1	0	0	0	0
04-03 Step (Up/Down 2) 99.99 Hz C C C 04-04 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0.1 0 C C 04-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0.1 0 C C 04-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -100.0 1.0% C C 04-07 Reference Futuation Limit (Up/Down 2) -100.0 1.0% C C 04-08 Frequency Reference Bias Outor Limit Selection 0.0 0.0% C C 04-09 Correction Requency Reference Bias Outor Limit Selection 0.0 0.0% C C 04-01 Offset Frequency 2 -100.0 b+1000 0.0% C C C 04-03 Offset Frequency 2 -100.0 b+1000 0.0% C <td< td=""><td></td><td></td><td></td><td>0.00 to</td><td>0.00</td><td>-</td><td>_</td><td>-</td></td<>				0.00 to	0.00	-	_	-
Big d4-04 Frequency Reference Bias Accel/Decel (Up/Down 2) 0,1 0 0 0 d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 0 0 0 d4-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0.1 0 0 0 0 d4-07 Analog Frequency Reference Bias Outport Limit (Up/Down 2) 0.0 0.0% 0 0 0 d4-08 Frequency Reference Bias Outport Limit (Up/Down 2) 0.0 0.0% 0 </td <td></td> <td>d4-03</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td>		d4-03				0		
General 44-04 Accel/Decel (Up/Down 2) 0,1 0 0 0 0 d4-05 Frequency Reference Bias Operation Mode Selectin (Up/Down 2) 0,1 0 0 0 d4-06 Frequency Reference Bias (Up/Down 2) -99.9 to +100.0 0.0% 0 0 d4-07 Reference Fluctuation Limit (Up/Down 2) 100.0 100.0% 0 0 d4-08 Frequency Reference Bias Lower Limit (Up/Down 2) 0.0 100.0% 0 0 d4-09 Frequency Reference Bias Lower Limit (Up/Down 2) -99.9 to 0.0 0.0% 0 0 0 d4-10 Up/Down Frequency Reference Limit Selection 0.1 0	σ							
Image: space of the second s	후	d4-04		0,1	0	0	0	
Image: space of the second s	ě							
Image: space of the second s	L Die	d4-05		0,1	0	0	0	0
Image: space of the second s	ere		Frequency Beference Bias	_00.0 to				
Image: space of the second s	l de	d4-06			0.0%	0	0	0
Image: space of the second s	1 m							
Image: space of the second s	ue l	d4-07			1.0%	0	0	0
Image: space of the second s	Т В							
Image: space of the second s	l e	d4-08			100.0%	\bigcirc	0	0
04-09 Lower Limit (Up/Down 2) 0.0 0.0% 0 0 d4-10 Up/Down Frequency Reference Limit Selection 0,1 0 0 0 d7-01 Offset Frequency 1 -1000 b+1000 0.0% 0 0 0 d7-02 Offset Frequency 2 -1000 b+1000 0.0% 0 0 0 d7-03 Offset Frequency 3 -1000 b+1000 0.0% 0 0 0 e1-01** Input Voltage Setting 155 to 255 dep.on drive S	<u>۳</u>							
Image: State of the section		d4-09			0.0%	0	0	0
d4-10 Limit Selection 0,1 0 0 0 0 0 d7-01 Offset Frequency 1 -1000 to +1000 0.0% 0								
		d4-10		0,1	0	\bigcirc	0	0
38 arr 47-02 Offset Frequency 2 -100.0 b+100.0 0.0%	~	d7-01		100.0 to 1100.0	0.0%	0	\cap	\cap
Signature E1-01*2 Input Voltage Setting 155 to 255 dep. on capacity S S S Signature E1-03 V/f Pattern Selection 0 to F F ○ × E1-04 Max Output Frequency 40.0 to 400.0 60.0 Hz S S S E1-06 Base Frequency 0.0 to 255.0 200.0 V S S S E1-07 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V ○ × E1-08*2 Minimum Output Freq. 0.0 to 255.0 9.0 V ○ × E1-10*2 Minimum Output Frequency 2 0.0 to 255.0 0.0 V ○ × E1-11*2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V ○ × E1-11*2*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V ○ × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V ○ × E1-13*2 Motor No-Load Current 10*020% of dive rade current 6*0 los ×	set					-	-	-
Signature E1-01*2 Input Voltage Setting 155 to 255 dep. on capacity S S S Signature E1-03 V/f Pattern Selection 0 to F F ○ × E1-04 Max Output Frequency 40.0 to 400.0 60.0 Hz S S S E1-06 Base Frequency 0.0 to 255.0 200.0 V S S S E1-07 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V ○ × E1-08*2 Minimum Output Freq. 0.0 to 255.0 9.0 V ○ × E1-10*2 Minimum Output Frequency 2 0.0 to 255.0 0.0 V ○ × E1-11*2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V ○ × E1-11*2*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V ○ × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V ○ × E1-13*2 Motor No-Load Current 10*020% of dive rade current 6*0 los ×	ie off							
State E1-01*2 Input Voltage Setting 155 to 255 drive capacity S S S State E1-03 V/f Pattern Selection 0 to F F O × E1-04 Max Output Frequency 40.0 to 400.0 60.0 Hz S S S S E1-05*2 Max Output Frequency 0.0 to E1-04 30.0 Hz S S S E1-07 Mid Output Frequency 0.0 to E1-04 3.0 Hz O × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S S E1-109 Minimum Output Frequency 2 0.0 to E1-04 1.5 Hz S S S E1-108*2 Mid Output Frequency Voltage 0.0 to 255.0 9.0 V O × E1-113*2 Base Voltage 0.0 to 255.0 0.0 V S S X E2-01 Motor Rated Current 10 to 200% drive rated current 0 to less Gep.on O × E2-02 Motor Iron-Core Saturation 0.50		u7-03		-100.0 10 +100.0		0		
Signature E1-03 V/f Pattern Selection 0 to F F × E1-04 Max Output Frequency 40.0 to 400.0 60.0 Hz S S S E1-05*2 Max Output Voltage 0.0 to 255.0 200.0 V S S S E1-06 Base Frequency 0.0 to E1-04 3.0 Hz		E1-01*2	Input Voltage Setting	155 to 255	drive	S	S	S
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-10* Mid Output Frequency Voltage 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 s × E2-02 Motor No-Load Current 0 to less than E2-01 × × E2-03 Motor No-Load Current 0 to less than E2-01 × × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 0.50 × × E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 × <t< td=""><td>S</td><td>E1 02</td><td>W/f Battarn Salastian</td><td>0 to E</td><td></td><td>0</td><td></td><td>~</td></t<>	S	E1 02	W/f Battarn Salastian	0 to E		0		~
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-10* Mid Output Frequency Voltage 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 s × E2-02 Motor No-Load Current 0 to less than E2-01 × × E2-03 Motor No-Load Current 0 to less than E2-01 × × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 0.50 × × E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 × <t< td=""><td>stic</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	stic							
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-10* Mid Output Frequency Voltage 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 s × E2-02 Motor No-Load Current 0 to less than E2-01 × × E2-03 Motor No-Load Current 0 to less than E2-01 × × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 0.50 × × E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 × <t< td=""><td>teri</td><td></td><td>Max Output Voltage</td><td></td><td></td><td></td><td></td><td></td></t<>	teri		Max Output Voltage					
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-10* Mid Output Frequency Voltage 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 s × E2-02 Motor No-Load Current 0 to less than E2-01 × × E2-03 Motor No-Load Current 0 to less than E2-01 × × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 0.50 × × E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 × <t< td=""><td>aci</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	aci							
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-10* Mid Output Frequency Voltage 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11* Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 s × E2-02 Motor No-Load Current 0 to less than E2-01 × × E2-03 Motor No-Load Current 0 to less than E2-01 × × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 0.50 × × E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 × <t< td=""><td>har</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	har							
E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S S E1-10*2 Minimum Output Freq. Voltage 0.0 to E1-04 1.5 Hz S S S E1-110*2 Minimum Output Frequency 2 0.0 to E1-04 0.0 Hz O X E1-112*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V O X E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S X E1-12*2 Motor Rated Current 10 to 200% of drive rated current Gep. on drive S S X E2-01 Motor No-Load Current 0 to less than E2-01 C X E2-03 Motor No-Load Current 0 to less than E2-01 C X E2-04 Number of Motor Poles 2 to 48 4 poles C X E2-05 Motor Iron-Core Saturation Coefficient 1 0.50 dep. on 0.50 C X E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 X X X E2-10 Motor Iron-Cor								
E1-12**2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V ○ × E1-13**2 Base Voltage 0.0 to 255.0 0.0 V ○ S × E2-01 Motor Rated Current 10 to 200% of dive rade durent 10 to 200% of dive rade durent 400.0 S × E2-02 Motor Rated Slip 0.00 to 20.00 offee on dive rade durent 0 0 × E2-03 Motor No-Load Current 0 to less than E2-01 C × E2-04 Number of Motor Poles 2 to 48 4 poles ○ × E2-05 Motor Iron-Core Saturation E2-07 to Coefficient 1 0.50 capacity ○ × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × ○ × E2-11 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E2-11 Motor Rated Output 0.00 to 650.00	er							
E1-12**2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V ○ × E1-13**2 Base Voltage 0.0 to 255.0 0.0 V ○ S × E2-01 Motor Rated Current 10 to 200% of dive rade durent 10 to 200% of dive rade durent 400.0 S × E2-02 Motor Rated Slip 0.00 to 20.00 offee on dive rade durent 0 0 × E2-03 Motor No-Load Current 0 to less than E2-01 C × E2-04 Number of Motor Poles 2 to 48 4 poles ○ × E2-05 Motor Iron-Core Saturation E2-07 to Coefficient 1 0.50 capacity ○ × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × ○ × E2-11 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E2-11 Motor Rated Output 0.00 to 650.00	att							
E1-12**2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V ○ × E1-13**2 Base Voltage 0.0 to 255.0 0.0 V ○ S × E2-01 Motor Rated Current 10 to 200% of dive rade durent 10 to 200% of dive rade durent 400.0 S × E2-02 Motor Rated Slip 0.00 to 20.00 offee on dive rade durent 0 0 × E2-03 Motor No-Load Current 0 to less than E2-01 C × E2-04 Number of Motor Poles 2 to 48 4 poles ○ × E2-05 Motor Iron-Core Saturation E2-07 to Coefficient 1 0.50 capacity ○ × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × ○ × E2-11 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E2-11 Motor Rated Output 0.00 to 650.00	₹ P							
E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E2-01 Motor Rated Current 10 to 200% of drive rated current 10 to 200% of drive rated current S S × E2-02 Motor Rated Slip 0.00 to 20.00 off 0 × 0 × E2-03 Motor No-Load Current 0 to less capacity 0 × × E2-04 Number of Motor Poles 2 to 48 4 poles × × E2-05 Motor Iron-Core Saturation Coefficient 1 0.00 to 65.00 dep. on drive × × E2-08 Motor Iron-Core Saturation Coefficient 2 0.00 to 10.0 0.0% × × E2-09 Motor Iron-Core Saturation Coefficient 3 0.0 to 655.05 dep. on dep. on off × × E2-11 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E2-11 Motor Iron-Core Satura	>						_	
Solution E2-01 Motor Rated Current 10 to 200% of drive rated current S S × E2-02 Motor Rated Slip 0.00 to 20.00 dep. on drive stan E2-01 S S × E2-03 Motor No-Load Current 0 to less than E2-01 Oto less than E2-01 O × E2-04 Number of Motor Poles 2 to 48 4 poles O × E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on dep. on Ocefficient 1 O × E2-06 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% × × E2-08 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 65535 dep. on dep. on capacity × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E3-01 Motor 2 Control Method 0.								
E2-01 Worder Rated Current drive rated current dep. on drive than E2-02 S S A E2-02 Motor Rated Slip 0.00 to 20.00 dep. on drive than E2-01 0 to less than E2-01 - × E2-03 Motor No-Load Current 0 to less than E2-01 - × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Line-to-Line Resistance 0.000 to 65.00 dep. on drive table × E2-06 Motor Iron-Core Saturation Coefficient 1 0.50 0.50 × × E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 0.75 × × E2-08 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 655.00 dep. on dep. on capacity × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E3-04 Motor 2 Control Method 0.2 0 × <td> </td> <td><u> = 1-13**</u></td> <td>Dase volidge</td> <td></td> <td>0.0 V</td> <td>U</td> <td>5</td> <td></td>		<u> = 1-13**</u>	Dase volidge		0.0 V	U	5	
E2-02 Motor Rated Slip 0.00 to 20.00 dep. on drag on drag on capacity on × E2-03 Motor No-Load Current 0 to less than E2-01 of to less than E2-11 of to less to less than E2-11 of to less than E2-11 of the to less than E2-11 of the to less than E2-01 of the to less than E2-11 of		E2-01	Motor Rated Current			S	S	×
E2-03 Motor No-Load Current 0 to less than E2-01 capacity capacity 0 × E2-04 Number of Motor Poles 2 to 48 4 poles 0 × E2-05 Motor Leakage Inductance 0.00 to 40.0 0 × × E2-06 Motor Iron-Core Saturation Coefficient 1 0.50 × × × E2-09 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × × E2-09 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% × × E2-10 Motor Iron-Core Saturation Coefficient 2 0.105 0.75 × × E2-11 Motor Iron Loss for Torque Compensation 0 to 655.05 dep.or drive capacity × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E3-01 Motor 2 Control Method 0.2 0 × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × E3-04 Motor 2		E2-02	Motor Bated Slip			0	\cap	×
E2-03 Motor No-Load Current Otor Bass than E2-01 O × E2-04 Number of Motor Poles 2 to 48 4 poles O × E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on capacity O × E2-06 Motor Leakage Inductance 0.0 to 40.0 capacity O × E2-07 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × O × E2-08 Motor Iron-Core Saturation Coefficient 2 0.75 × O × E2-09 Motor Iron-Core Saturation Coefficient 2 0.75 × O × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 655.05 dep. on 0.75 × × E2-11 Motor Iron-Core Saturation Coefficient 3 0.0 to 655.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ×		L2-02				U		
Superior E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on dep. dep. on dep. on dep. dep. on dep. dep. on dep. dep. on dep. dep. on dep. dep. dep. on dep. dep. dep. dep. dep. dep. dep. dep.		E2-03	Motor No-Load Current		,	\bigcirc	0	×
Sector E2-05 Motor Line-to-Line Resistance 0.000 to 65000 dep. on diversity O × E2-06 Motor Leakage Inductance 0.0 to 40.0 capacity O × E2-07 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × O × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × O × E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron-Core Saturation Coefficient 2 0.0 to 65535 dep. on capacity O × E2-10 Motor Iron-Core Saturation Compensation 0.0 to 650.00 0.40 kW S S E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E3-01 Motor 2 Control Method 0.2 0 × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.		E2 04	Number of Motor Dalas		1 notes	0		
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on offwer capacity ○ × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ○ × E3-01 Motor 2 Control Method 0.2 0 ○ × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-05 E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×	s							
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on offwer capacity ○ × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ○ × E3-01 Motor 2 Control Method 0.2 0 ○ × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-05 E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×	eter				drive			
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on offwer capacity ○ × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ○ × E3-01 Motor 2 Control Method 0.2 0 ○ × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-05 E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×	Į Į	E2-06			capacity	U		×
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on offwer capacity ○ × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ○ × E3-01 Motor 2 Control Method 0.2 0 ○ × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-05 E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×	are	E2-07			0.50	×	0	×
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on offwer capacity ○ × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ○ × E3-01 Motor 2 Control Method 0.2 0 ○ × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-05 E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×	Ц Ц Ц							
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on offwer capacity ○ × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ○ × E3-01 Motor 2 Control Method 0.2 0 ○ × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-05 E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ○ × E3-06 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×	b b	E2-08			0.75	×	0	×
E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on drive capacity 0 × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × 0 × S0 E3-01 Motor 2 Control Method 0,2 0 0 × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz 0 × E3-05*2 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz 0 × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz 0 × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz 0 × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V 0 ×	Σ	E2-09 Motor Mechanical Loss			0.0%	~		~
E2-10 Instant Antipolo for the space 0 to 65535 drive capacity Compensation E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × C × E3-01 Motor 2 Control Method 0,2 0 C × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V × ×		LZ-09		0.0 10 10.0		^		\vdash
E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ○ × E3-01 Motor 2 Control Method 0,2 0 ○ × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-06 Motor 2 Base Frequency 0.0 to E3-04 3.0 Hz ○ × E3-07 Motor 2 Mid Output Freq. 0.0 to 255.0 16.0 V ○ ×		E2-10		0 to 65535	drive	\bigcirc	×	×
E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × > × E3-01 Motor 2 Control Method 0,2 0 ○ × E3-04 Motor 2 Control Method 0,2 0 ○ × E3-05 E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ○ × E3-05 E3-06 Motor 2 Base Frequency 0.0 to 253.0 200.0 Hz ○ × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-07 Motor 2 Mid Output Freq. 0.0 to 255.0 16.0 V ○ × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×		E0 11		0.00 to 650.00		0	0	
E2-12 Coefficient 3 1.30 to 5.00 1.30 X V X E3-01 Motor 2 Control Method 0,2 0 0 × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz 0 × E3-05 E3-06 Motor 2 Max Output Frequency 0.0 to 255.0 200.0 V 0 × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz 0 × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz 0 × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V 0 ×		<u> =2-11</u>		0.00 10 000.00	0.40 KVV	ъ	5	
B3-01 Motor 2 Control Method 0,2 0 0 × 39 E3-04 Motor 2 Control Method 0,2 0 0 × 40.0 to to 400.0 60.0 Hz 0 × × × 50 E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × 50 E3-06*2 Motor 2 Max Voltage 0.0 to 255.0 200.0 V ○ × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ○ × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ○ × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ○ ×		E2-12		1.30 to 5.00	1.30	×	0	×
S0 E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ··· × E3-05*2 Motor 2 Max Voltage 0.0 to 255.0 200.0 V ··· × E3-05 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ··· × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ··· × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ··· × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ··· ×	<u> </u>							
State E3-05*2 Motor 2 Max Voltage 0.0 to 255.0 200.0 V · × State E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz · × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz · × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V · ×								
	%							
	2 V eris							
	otor							
	ЧĂ							
E3-09 Motor 2 Min. Output Freq. 0.0 to E3-04 1.5 Hz \bigcirc \bigcirc \times								
		E3-09	v v v v v v v v v	U.U TO E3-04	I.Ə HZ	U	\cup	×

Boo Name Range Deft*/image Vit OUV PM 10 B3-101 Motor 2 Mid Output Frequency 2 0.0 to E3-04 0.0 Vac 0 × E3-121 Motor 2 Mid Output 0.0 to E3-04 0.0 Vac 0 × E3-128 Motor 2 Base Output 0.0 to E35.0 0.0 Vac 0 × E3-161 Motor 2 Rated Stip 0.0 to 255.0 0.0 Vac 0 × E4-01 Motor 2 Rated Stip 0.0 to 255.0 0.0 Vac × × E4-02 Motor 2 Rated Stip 0.00 to 250.0 0.0 × × E4-06 Motor 2 Motor 10m-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × × E4-06 Motor 2 Motor 10m-Core Saturation Coefficient 2 E4-01 Motor 2 Motor 10m-Core Saturation Coefficient 3 1.30 to × × × E4-10 Motor 2 Motor 10m-Core Saturation Coefficient 3 1.30 to × × S E4-14 Motor 2 Atea Capacity	no					Con	trol M	ode
Solution	Functior	No.	Name	Range	Def*1			
E5-13** Motor 2 Base Voltage 0.0 to 255 0.0 Vac S × E4-02 Motor 2 Rated No-Load 0 to less ceparly O × E4-03 Motor 2 Rated No-Load 0 to less ceparly O × E4-04 Motor 2 Rated No-Load 0 to less ceparly O × E4-05 Motor 2 Leated Inductance 0.00 to 6500 ceparly O × E4-05 Motor 2 Leated Inductance 0.00 to 0.50 0.50 × × E4-06 Motor 2 Leated Inductance 0.00 to 0.50 0.50 × × E4-07 Motor 2 Mechanical Loss 0.0 to 6500 ceparly O × E4-10 Motor 2 Indechanical Loss 0.0 to 0.50 0.50 × × E4-11 Motor 2 Indechanical Loss 0.0 to 2.50 0.0 × × S E4-12 Motor 2 Ales Capacity (tor PM motor) 0.000 to 5500 ceparly × S E5-03 Motor Rated Capacity (tor PM motor) 0.000 to 5000						-	-	
E5-13** Motor 2 Base Voltage 0.0 to 255 0.0 Vac S × E4-02 Motor 2 Rated No-Load 0 to less ceparly O × E4-03 Motor 2 Rated No-Load 0 to less ceparly O × E4-04 Motor 2 Rated No-Load 0 to less ceparly O × E4-05 Motor 2 Leated Inductance 0.00 to 6500 ceparly O × E4-05 Motor 2 Leated Inductance 0.00 to 0.50 0.50 × × E4-06 Motor 2 Leated Inductance 0.00 to 0.50 0.50 × × E4-07 Motor 2 Mechanical Loss 0.0 to 6500 ceparly O × E4-10 Motor 2 Indechanical Loss 0.0 to 0.50 0.50 × × E4-11 Motor 2 Indechanical Loss 0.0 to 2.50 0.0 × × S E4-12 Motor 2 Ales Capacity (tor PM motor) 0.000 to 5500 ceparly × S E5-03 Motor Rated Capacity (tor PM motor) 0.000 to 5000	2 V/f eristic	E3-11			0.0 Hz	0	0	×
E5-13** Motor 2 Base Voltage 0.0 to 255 0.0 Vac S × E4-02 Motor 2 Rated No-Load 0 to less ceparly O × E4-03 Motor 2 Rated No-Load 0 to less ceparly O × E4-04 Motor 2 Rated No-Load 0 to less ceparly O × E4-05 Motor 2 Leated Inductance 0.00 to 6500 ceparly O × E4-05 Motor 2 Leated Inductance 0.00 to 0.50 0.50 × × E4-06 Motor 2 Leated Inductance 0.00 to 0.50 0.50 × × E4-07 Motor 2 Mechanical Loss 0.0 to 6500 ceparly O × E4-10 Motor 2 Indechanical Loss 0.0 to 0.50 0.50 × × E4-11 Motor 2 Indechanical Loss 0.0 to 2.50 0.0 × × S E4-12 Motor 2 Ales Capacity (tor PM motor) 0.000 to 5500 ceparly × S E5-03 Motor Rated Capacity (tor PM motor) 0.000 to 5000	Aotor aract	E3-12*2			0.0 Vac	0	0	×
E4-01 Motor 2 Rated Current 11b 20% different 0 × E4-02 Motor 2 Rated Slip 0.00 to 20.00 00% bits 0 × E4-03 Motor 2 Rated No-Load 0 to less 000 to 0.00 0 × E4-05 Motor 2 Motor Poles 2 to 48 4 poles 0 × E4-05 Motor 2 Motor Ion-Core 0.01 to 0.05 0.00 0 × × E4-06 Motor 2 Motor Ion-Core Setting for 0 × × E4-08 Motor 2 Motor Ion-Core Setting for 0 × × E4-10 Motor 2 Motor Ion-Core Saturation 0.00 to 6503 60, on × × E4-11 Motor 2 Ion-Core Saturation 1.30 to 0.00 × × E4-14 Motor 2 Motor Capacity 0.00 to 6503 60, on × × S E5-01 Motor C Rated Capacity 0.00 to 6500.00 × × S S E5-02 Motor Ratad Capacity 0.00 to 600.00	÷ وً	E3-13*2			0.0 Vac	0	S	×
E4-02 Motor 2 Rated Slip Obio 10 20:00 Separation Separation E4-03 Motor 2 Rated No-Load 0 to less Comparing C X E4-04 Motor 2 Rated No-Load 0 to less Comparing C X E4-06 Motor 2 Laneto-Line Resistance 0.000 to 0.500 def. on C X E4-07 Motor 2 Motor Ton-Core Saturation Coefficient 1 0.00 to 0.50 X X E4-09 Motor 2 Motor Core Saturation Coefficient 3 0.00 to 0.50 X X E4-10 Motor 2 Inch-Care Saturation Coefficient 3 5.00 X X E4-11 Motor 2 Iron-Core Saturation Coefficient 3 5.00 X X E4-14 Motor 2 Bip Compensation Gain 0.00 to 2.55 0.0 X X E5-04 Motor Resistance 0.000 to 65:00 X S S E5-04 Motor Resistance 0.001 to 60:00 X S S E5-04 Motor Raxis Inductance 0.001 to 0:00		E4-01	× · · · · ·			\cap	0	×
E4-03 Motor 2 Brated No-Load 0 to less than E4-01 cepacity (a) cepacity (b) (c) × E4-04 Motor 2 Line-to-Line Resistance E4-05 0.01 to 40.01 (c) × E4-06 Motor 2 Line-to-Line Resistance E4-07 0.01 to 40.01 (c) × E4-07 Saturation Coefficient 1 0.00 to 0.50 0.50 × × E4-08 Motor 2 Notor Iron-Core Saturation Coefficient 2 E4-07 0.01 to 50.0 0.0 × × E4-01 Motor 2 Notor Core Saturation Coefficient 3 0.01 to 50.0 0.0 × × E4-11 Motor 2 Sing Compensation Gain 0.00 to 50.00 × × × E4-14 Motor 2 Sing Compensation Gain 0.00 to 2.50 1.00 × × S E5-01 Motor Astes Capacity 0.000 to 65.00 × × S S E5-04 Motor Astes Inductance 0.001 to 80.00 No × S S × S S E5-04 Motor Astes Inductance 0.001								
E4-03 Current than E4-01 O O × E4-04 Motor 2 Motor Poles 2 to 48 4 poles O × E4-05 Motor 2 Leakage Inductance 0.00 to 05.00 vs × × E4-07 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 05.00 vs × × E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 05.00 vs × × E4-10 Motor 2 Motor Iron-Core Saturation Coefficient 3 vs × × × E4-11 Motor 2 Motor Core Saturation 1.30 to × × × × S E4-14 Motor 2 Iron-Cores Saturation 1.00 to 1.00 to × × × S E5-01 Motor Rated Capacity for PM motor 0.00 to 10.000.00 × × S S × S S E5-02 Motor Rated Capacity for PM motor 0.00 to 20.00 × × S S S S			· · · · · · · · · · · · · · · · · · ·			0	0	×
Best E4-05 Motor 2 Leakage Inductance 0.00 to 65.00 dep.or. expensive 0 × E4-07 Motor 2 Motor Inor-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × × E4-08 Motor 2 Motor Inor-Core Saturation Coefficient 2 E4-07 htto 75 0.75 × × E4-08 Motor 2 Motor Inor-Core Saturation Coefficient 2 E4-07 htto 75 0.00 × × E4-10 Motor 2 Inor Loss 0.01 to 6553 0.00 × × × E4-11 Motor 2 Inor Loss 0.01 to 2.50 0.0 ×		E4-03				0	0	×
E4-10 Motor 2 Iron Loss 0 to 65535 dep. on Gamme 0 × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E4-14 Motor 2 Sip Compensation Gain - Motor 2 1.00 to 2.50 1.00 × × E4-14 Motor Alder Capacity for PM motor) 0.10 to 1.55 0.0 ×		E4-04	Motor 2 Motor Poles	2 to 48		0	0	×
E4-10 Motor 2 Iron Loss 0 to 65535 dep. on Gamme 0 × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E4-14 Motor 2 Sip Compensation Gain - Motor 2 1.00 to 2.50 1.00 × × E4-14 Motor Alder Capacity for PM motor) 0.10 to 1.55 0.0 ×	ters				dep. on drive	_		
E4-10 Motor 2 Iron Loss 0 to 65535 dep. on Gamme 0 × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E4-14 Motor 2 Sip Compensation Gain - Motor 2 1.00 to 2.50 1.00 × × E4-14 Motor Alder Capacity for PM motor) 0.10 to 1.55 0.0 ×	mei	E4-06	~ ~	0.0 to 40.0	capacity	0	0	×
E4-10 Motor 2 Iron Loss 0 to 65535 dep. on Gamme 0 × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E4-14 Motor 2 Sip Compensation Gain - Motor 2 1.00 to 2.50 1.00 × × E4-14 Motor Alder Capacity for PM motor) 0.10 to 1.55 0.0 ×	ara	E4-07		0.00 to 0.50	0.50	×	0	×
E4-10 Motor 2 Iron Loss 0 to 65535 dep. on Gamme 0 × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E4-14 Motor 2 Sip Compensation Gain - Motor 2 1.00 to 2.50 1.00 × × E4-14 Motor Alder Capacity for PM motor) 0.10 to 1.55 0.0 ×	2 F	E4.00		Setting for	0.75	~	0	~
E4-10 Motor 2 Iron Loss 0 to 65535 dep. on Gamme 0 × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E4-14 Motor 2 Sip Compensation Gain - Motor 2 1.00 to 2.50 1.00 × × E4-14 Motor Alder Capacity for PM motor) 0.10 to 1.55 0.0 ×	otor							^
E4-11 Motor 2 Hated Capacity 0.00 to 50.00 capacity 0 × E4-12 Motor 2 Inco-Core Saturation 1.30 × × × E4-14 Motor 2 Sip Compensation Gain 0.10 to 2.50 0.0 × × E4-15 Torque Compensation Gain 1.00 to 2.50 1.00 × × × × S E5-01 Motor Rated Current Tib 200% drive × × S × × S E5-03 Motor Rated Current Tib 200% drive × × S × × S E5-04 Motor Asis Inductance 0.000 to 6000 capacity × × S E5-05 Motor Induction Voltage Constant 1 0.0 to 2000 × × S E5-06 Motor Induction Voltage Constant 2 0.0 to 3 1 × × S C5-07 Motor Induction Voltage Constant 2 0.0 to 20 1.0 × × S F1-02 Operation Selection at Devi	Ň						-	
E4-12 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 to 5.00 X E4-14 Motor 2 Sig Compensation Gain 0.0 to 2.50 0.0 X E4-15 Torque Compensation Gain 0.0 to 2.50 1.00 X E5-02 Motor Rated Capacity (for PM motor) 0000 to FFFF X X S E5-03 Motor Related Current To 200% drive rated current X X S E5-04 Motor Alated Current To 200% drive rated current X X S E5-05 Motor Akis Inductance 0.00 to 60.00 X X S E5-06 Motor Induction Voltage Constant 1 0.01 to 600.00 X X S E5-07 Motor Induction Voltage Constant 2 0.01 to 600.00 X X S F1-02 Operation Selection at 1 0 to 3 1 X X F1-03 Overspeed Detection Level 10 to 20 1.0 X X F1-10 Excessive Speed Deviation Time 0.0 to 10.0 0.5 s					dep. on drive	_		
E4-12 Coefficient 3 5.00 1.30 X O X E4-14 Motor 2 Sip Compensation Gain Noto 2.5 0.0 O X E4-15 Torque Compensation Gain Notor 2 1.00 to 2.5 0.0 O X X S E5-01 Motor Cade Selection (for PM motor) 0000 to FFFF X X S E5-02 Motor Rated Current 10 to 200% of the rated current X X S E5-05 Motor Axis Inductance 0.00 to 65.000 X X S E5-06 Motor Iduction Voltage Constant 1 0.01 to 2000.0 X X S E5-07 Motor Induction Voltage Constant 2 0.01 to 6000.0 X X S E5-09 Motor Induction Voltage Constant 2 0.01 to 3 1 X X S F1-02 Operation Selection at Deviation 0 to 3 1 X X S F1-03 Overspeed Deviation 0 to 10.0 0.5 s X X <td< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></td<>						_		
E4-15 Torque Compensation Gain - Motor 2 1.00 to 2.50 1.00 ○ × E5-01 Motor Cade Selection (for PM motor) 0.00 to 1815 × × S E5-03 Motor Rated Capacity (for PM motor) 0.10 to 1815 × × S E5-04 Motor Rated Current 10 to 200% of drive rade current × × S E5-05 Motor Resistance 0.000 to 65.000 × × S E5-06 Motor Induction Voltage Constant 1 0.00 to 600.00 × × S E5-07 Motor Induction Voltage Constant 2 0.00 to 600.00 × × S E5-07 Motor Induction Voltage Constant 2 0.0 to 600.00 × × S F1-02 Operation Selection at Deviation 0 to 3 1 × × S F1-04 Operation Selection at Deviation 0 to 50 10% × × F1-04 Overspeed Deviation Detection Level 0 to 50 10% × × F1-10 Exces		E4-12			1.30	×	0	×
generation E5-01 Motor Code Selection (for PM motor) 0000 to FFFF X X S E5-02 Motor Rated Capacity (for PM motor) 10b 200%, of the rade ourset X X S E5-03 Motor Poles 2 to 48 Motor Code Selection X X S E5-06 Motor Axis Inductance 0.000 to 500.00 X X S E5-07 Motor Induction Voltage Constant 1 0.00 to 600.00 X X S E5-07 Motor Induction Voltage Constant 1 0.00 to 600.00 X X S E5-07 Motor Induction Voltage Constant 1 0.0 to 6000.0 X X S E5-07 Motor Induction Voltage Constant 1 0.0 to 3 1 X X F1-08 Operation Selection at Deviation 0 to 3 1 X X F1-08 Overspeed Detection Level 0 to 10.0 1.0 X X F1-10 Detection Level 0.0 to 10.0 0.5 s X X F1-11						-	-	
Bits E5-02 Motor Rated Capacity (for PM motor) 0.10 to 18.50 E5-03 Motor Rated Current 10b 200% of drive rated current see, on rated current x <t< td=""><td></td><td></td><td></td><td></td><td>1.00</td><td></td><td>-</td><td></td></t<>					1.00		-	
E5-24 Motor Induction Voltage Constant 2 0.0 to 6000.0 × × S G Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Deviation 0 to 3 3 × × F1-04 Operation Selection Level 0 to 120 115% × × F1-05 Overspeed Detection Delay Time 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Ccharnal Fault from Comm. Option Selection 0.1 to 0.10 0 0 0 F6-02 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-03	s							
E5-24 Motor Induction Voltage Constant 2 0.0 to 6000.0 × × S G Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Deviation 0 to 3 3 × × F1-04 Operation Selection Level 0 to 120 115% × × F1-05 Overspeed Detection Delay Time 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Ccharnal Fault from Comm. Option Selection 0.1 to 0.10 0 0 0 F6-02 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-03	ster							
E5-24 Motor Induction Voltage Constant 2 0.0 to 6000.0 × × S G Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Deviation 0 to 3 3 × × F1-04 Operation Selection Level 0 to 120 115% × × F1-05 Overspeed Detection Delay Time 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Ccharnal Fault from Comm. Option Selection 0.1 to 0.10 0 0 0 F6-02 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-03	ame	E5-03	Motor Rated Current			×	×	S
E5-24 Motor Induction Voltage Constant 2 0.0 to 6000.0 × × S G Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Deviation 0 to 3 3 × × F1-04 Operation Selection Level 0 to 120 115% × × F1-05 Overspeed Detection Delay Time 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Ccharnal Fault from Comm. Option Selection 0.1 to 0.10 0 0 0 F6-02 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-03	are	E5-04	Motor Poles	2 to 48	dep. on	×	×	S
E5-24 Motor Induction Voltage Constant 2 0.0 to 6000.0 × × S G Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Deviation 0 to 3 3 × × F1-04 Operation Selection Level 0 to 120 115% × × F1-05 Overspeed Detection Delay Time 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Ccharnal Fault from Comm. Option Selection 0.1 to 0.10 0 0 0 F6-02 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-03	οr Ρ	E5-05	Motor Resistance	0.000 to 65.000		×	×	S
E5-24 Motor Induction Voltage Constant 2 0.0 to 6000.0 × × S G Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Deviation 0 to 3 3 × × F1-04 Operation Selection Level 0 to 120 115% × × F1-05 Overspeed Detection Delay Time 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Ccharnal Fault from Comm. Option Selection 0.1 to 0.10 0 0 0 F6-02 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-03	Aoto							
E5-24 Motor Induction Voltage Constant 2 0.0 to 6000.0 × × S G Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Deviation 0 to 3 3 × × F1-04 Operation Selection Level 0 to 120 115% × × F1-05 Overspeed Detection Delay Time 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Ccharnal Fault from Comm. Option Selection 0.1 to 0.10 0 0 0 F6-02 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-03	M							
Pri-02 Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × Pri-03 Operation Selection at Overspeed (S) 0 to 3 1 × × × Pri-04 Operation Selection at Overspeed Detection Level 0 to 3 1 × × × Pri-05 Overspeed Detection Level 0 to 120 115% × × Pri-06 Overspeed Detection Level 0 to 50 10% × × F1-10 Detection Level 0 to 10.0 0.5 s × × F1-11 Excessive Speed Deviation Detection Delay Time 0.0 to 10.0 0.5 s × × F1-11 Excessive Speed Deviation Detection Communications Error 0 to 3 1 ○ ○ F1-14 PG Open-Circuit Detection Operation Selection 0 to 3 1 ○ ○ F6-01 External Fault from Comm. Option Operation Selection 0 to 3 1 ○ ○ F6-03 Multi-Step Speed during Neffer620 mRef 0,1 ○ ○ ○	Ъ							
B1-02 Open Circuit (PGo) 0 to 3 1 × × F1-03 Operation Selection at 0 to 3 1 × × 00 Operation Selection at Deviation 0 to 3 1 × × 00 Operation Selection at Deviation 0 to 3 3 × × 00 Verspeed Detection Level 0 to 120 115% × × F1-08 Overspeed Detection Level 0 to 50 10% × × F1-10 Excessive Speed Deviation 0 to 50 10% × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 0.5 s × × F1-14 PG Open-Circuit Detection 0.0 to 10.0 2.0 s × × F6-01 Communications Error 0 to 3 1 ○ ○ F6-02 External Fault from Comm. 0,1 0 ○ ○ F6-03 Reset Communication Parameters 0,1 0 ○ ○ F6-14	J							
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	- P(F1-02		0 to 3	1	0	×	×
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	back	E1-02	Operation Selection at	0 to 2	4	0	×	×
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	eedt 's							
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	G Fi							
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	le P aram					-		
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	simp p Pe					_		
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	ith S Setu	F1-10		0 to 50	10%	0	×	×
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	N IO	F1-11		0 0 to 10 0	055	0	x	×
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	contr			0.0 10 10.0	0.00		~	
F6-01 Communications Error Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 <	// C	F1-14		0.0 to 10.0	2.0 s	0	×	×
F6-01 Operation Selection 0 to 3 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0	_		-			-	-	
F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 0 F6-04 Bus Error Detection Time 0.1 to 5.0 2.0 s 0		F6-01		0 to 3	1	0	0	0
Option Selection 0 to 3 1 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 0 0 0 0 F6-10 CC-Link Node Address 0 to 63 0 <td></td> <td>E6-02</td> <td></td> <td>0.1</td> <td>0</td> <td>0</td> <td>0</td> <td></td>		E6-02		0.1	0	0	0	
F6-03 Option Operation Selection 0 to 3 1 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 0 0 0 0 F6-08 Reset Communication Parameters 0,1 0		10-02		0,1	U			\cup
Control Operation Selection Image: Control operation Selection F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s Image: Control operation F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 Image: Control operation F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 Image: Control operation F6-10 CC-Link Node Address 0 to 63 0 Image: Control operation Image: Control operation F6-11 CC-Link Communications Speed 0 to 4 0 Image: Control operation Image: Control operation F6-14 BUS Error Auto Reset 0,1 0 Image: Control operation Image: Control operation F6-21 MECHATROLINK Istaion Address 20H to 3FH 21 Image: Control operation Image: Control		F6-03		0 to 3	1	0	0	0
F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 0 0 F6-08 Reset Communication Parameters 0,1 0 0 0 F6-08 Reset Communication Parameters 0,1 0 0 0 F6-10 CC-Link Node Address 0 to 63 0 0 0 0 F6-11 CC-Link Communications Speed 0 to 4 0 0 0 0 F6-14 BUS Error Auto Reset 0,1 0 0 0 0 F6-20 MECHATROLINK Station Address 20H to 3FH 21 0 0 0 F6-21 MECHATROLINK Frame Size 0,1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
B P6-07 NefRef/ComRef 0,1 0								
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	gs	+6-07		0,1	0	0	0	0
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	ttin			,				
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	Se							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	ard							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	U U							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	otio							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	ŏ							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	ons		· · · · ·					
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	cati							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	iuni							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	шш							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	CO							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	rial							
F6-36 CANopen Communications Speed 0 to 8 6 O O F6-40 CompoNet Node ID 0 to 63 0 O O F6-41 CompoNet Speed 0 to 255 0 O O F6-50 DeviceNet MAC Address 0 to 63 *1 O O F6-51 DeviceNet Communications Speed 0 to 4 *1 O O F6-52 DeviceNet CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O	Se							
F6-41 CompoNet Speed 0 to 255 0 ○ ○ F6-50 DeviceNet MAC Address 0 to 63 *1 ○ ○ F6-51 Device Net Communications Speed 0 to 4 *1 ○ ○ F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 ○ ○ F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 ○ ○		F6-36	CANopen Communications Speed	0 to 8	6			
F6-50 DeviceNet MAC Address 0 to 63 *1 ○ ○ F6-51 Device Net Communications Speed 0 to 4 *1 ○ ○ F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 ○ ○ F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 ○ ○								
F6-51 Device Net Communications Speed 0 to 4 *1 ○ ○ F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 ○ ○ F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 ○ ○								
F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 O O F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 O O								
F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 0 0								
		F6-54		0,1	0	0	0	0

*1: Default setting depends on the control mode.
*2: Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.

no					Cor	trol M	ode
Function	No.	Name	Range	Def*1	V/f	OLV	PM
	F6-55	DeviceNet Baud Rate from Network	0 to 2 (read only)	—	0	0	0
etting	F6-56	DeviceNet / CompoNet Speed Scaling Factor	-15 to 15	0	0	0	0
Serial Communications Option Card Settings	F6-57	DeviceNet / CompoNet Current Scaling Factor	-15 to 15	0	0	0	0
Option	F6-58	DeviceNet / CompoNet Torque Scaling Factor	-15 to 15	0	0	0	0
ations	F6-59	DeviceNet / CompoNet Power Scaling Factor	-15 to 15	0	0	0	0
munic:	F6-60	DeviceNet / CompoNet Voltage Scaling Factor	-15 to 15	0	0	0	0
al Com	F6-61	DeviceNet / CompoNet Time Scaling Factor	-15 to 15	0	0	0	0
Seri	F6-62	DeviceNet Heartbeat Interval	0 to 10	0	0	0	0
	F6-63	DeviceNet MAC ID from Network	0 to 63 (read only)		0	0	0
s	H1-01	Multi-Function Digital Input Terminal S1 Function Selection		40	0	0	0
Input	H1-02	Multi-Function Digital Input Terminal S2 Function Selection		41	0	0	0
Multi-Function Digital Inputs	H1-03	Multi-Function Digital Input Terminal S3 Function Selection		24	0	0	0
ction [H1-04	Multi-Function Digital Input Terminal S4 Function Selection	1 to 9F	14	0	0	0
-Fund	H1-05	Multi-Function Digital Input Terminal S5 Function Selection		3(0)	0	0	0
Multi	H1-06	Multi-Function Digital Input Terminal S6 Function Selection		4(3)	0	0	0
	H1-07	Multi-Function Digital Input Terminal S7 Function Selection		6(4)	0	0	0
Digital	H2-01	Terminal MA, MB and MC Function Selection (relay)		E	0	0	0
Multi-Function Digital Outputs	H2-02	Terminal P1 Function Selection (open-collector)	0 to 192	0	0	0	0
ulti-Fu	H2-03	Terminal P2 Function Selection (open-collector)		2	0	0	0
Σ	H2-06	Watt Hour Output Unit Selection	0 to 4	0	0	0	0
	H3-01 H3-02	Terminal A1 Signal Level Selection Terminal A1 Function Selection	0,1 0 to 31	0	0	0	0
	H3-02	Terminal A1 Gain Setting	-999.9 to 999.9		0	0	0
	H3-04	Terminal A1 Bias Setting	-999.9 to 999.9	0.0%	Ō	0	0
ts	H3-09	Terminal A2 Signal Level Selection	0 to 3	2	0	0	0
ndu	H3-10 H3-11	Terminal A2 Function Selection	0 to 31	0	0	0	0
bc	H3-11	Terminal A2 Gain Setting Terminal A2 Input Bias	-999.9 to 1000.0 -999.9 to 999.9	100.0%	0	0	0
Analog Inputs	H3-13	Analog Input Filter Time Constant	0.00 to 2.00	0.03 s	0	Õ	0
Ā	H3-14	Analog Input Terminal Enable Selection	1,2,7	7	0	0	0
	H3-16	Multi-Function Analog Input Terminal A1 Offset	-500 to 500	0	0	0	0
	H3-17	Multi-Function Analog Input Terminal A2 Offset	–500 to 500	0	0	0	0
tion puts	H4-01	Multi-Function Analog Output Terminal AM	000 to 999	102	0	0	0
Multi-Function Analog Outputs	H4-02	Multi-Function Analog Output Terminal AM Gain	-999.9 to 999.9	100.0%	S	S	S
Ana	H4-03	Multi-Function Analog Output Terminal AM Bias	-999.9 to 999.9	0.0%	0	0	0
	H5-01	Drive Slave Address	0 to 20 H	1F	0	0	0
ŝ	H5-02	Communication Speed Selection	0 to 8	3	00	0	0
MEMOBUS/Modbus Communications	H5-03 H5-04	Communication Parity Selection Stopping Method After Communication Error	0 to 2 0 to 3	0 3	0	0	0
Commu.	H5-05	Communication Fault Detection Selection	0,1	1	0	0	0
) snc	H5-06 Drive Transmit Wait Time		5 to 65	5 ms	0	0	0
Modt	H5-07	RTS Control Selection	0,1	1	0	0	0
NSL	H5-09 CE Detection Time		0.0 to 10.0	2.0 s	0	0	0
EMOBI	H5-10	Unit Selection for MEMOBUS/ Modbus Register 0025H	0,1	0	0	0	0
×	H5-11	Communications ENTER Function Selection	0,1	1	0	0	0
	H5-12 Run Command Method Selection		0,1	0	0	0	0
Pulse Train Input/Output	H6-01	Function Selection	0 to 3	0	0	0	0
se T ut/OL	H6-02 H6-03	Pulse Train Input Scaling Pulse Train Input Gain	100 to 32000 0.0 to 1000.0	1440 Hz 100.0%	0	0	0
Pul	H6-04	Pulse Train Input Bias	-100.0 to +100.0	0.0%	0	0	0
	H6-05	Pulse Train Input Filter Time			0	0	0

Ę					Cor	ntrol M	ode
Function	No.	Name	Range	Def*1	V/f	OLV	PM
Pulse Train Input/Output	H6-06	Pulse Train Monitor	000,031,101,102,	102	0	0	0
e Tr		Terminal MP Selection	105,116,501,502				
ouls oput	H6-07 H6-08	Pulse Train Monitor Scaling Pulse Train Input Minimum Frequency	0 to 32000 0.1 to 1000.0	1440 Hz 0.5 Hz	0	0	0
4 5	L1-01	Motor Overload Protection Selection	0 to 4,6	1	s	s	s
s	L1-02	Motor Overload Protection Time	0.1 to 5.0	1.0 min	Õ	0	Õ
nction	L1-03	Motor Overheat Alarm Operation Selection (PTC input)	0 to 3	3	0	0	0
Motor Protection Functions	L1-04	Motor Overheat Fault Operation Selection (PTC input)	0 to 2	1	0	0	0
tectic	L1-05	Motor Temperature Input	0.00 to	0.20 s	0	0	0
or Pro	L1-13	Filter Time (PTC input) Continuous Electrothermal	10.00 0,1	1	0	0	0
loto	-	Operation Selection	-				
2	L1-22*2	Leakage Current Filter 1	0.0 to 60.0	20.0	0	0	0
	L1-23*2	Leakage Current Filter 2	0.0 to 60.0	1.0	0	0	0
	L2-01	Momentary Power Loss	0 to 2	0	\bigcirc	0	0
~	L2-02	Operation Selection Momentary Power Loss Ride-Thru Time	0.0 to 25.5		0	0	0
oss	L2-02	Momentary Power Loss Minimum	0.0 10 25.5		0		
ver L	L2-03	Baseblock Time	0.1 to 5.0	dep. on drive	0	0	0
Momentary Power Loss	L2-04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 to 5.0	capacity	0	0	0
ıtaı	L2-05*3	Undervoltage Detection Level (Uv)	150 to 210		0	0	0
ner	L2-06	KEB Deceleration Time	0.0 to 200.0	0.0 s	0	0	0
Mor	L2-07	KEB Acceleration Time	0.0 to 25.5	0.0 s	0	0	0
2	L2-08	KEB Start Output Frequency Reduction	0 to 300	100% E1-01×	0	0	0
	L2-11*3	Desired DC Bus Voltage during KEB	150 to 400	1.22 (V)	0	0	0
	L3-01	Stall Prevention Selection during Acceleration	0 to 2	1	0	0	0
	L3-02	Stall Prevention Level during Acceleration	0 to 150	dep. on drive capacity	0	0	0
	L3-03	Stall Prevention Limit during Acceleration	0 to 100	50%	0	0	0
	L3-04	Stall Prevention Selection during Deceleration	0 to 4,7	1	S	S	s
ons	L3-05	Stall Prevention Selection during Run	0 to 2	1	0	×	0
uncti	L3-06	Stall Prevention Level during Run	30 to 150	dep. on drive capacity	0	×	0
ЧĽ	L3-11	ov Suppression Function Selection	0,1	0	0	0	0
entio	L3-17*3	Overvoltage Suppression and Stall Prevention Desired DC Bus Voltage	150 to 400	370 V	0	0	0
Stall Prevention Functions	L3-20	Main Power Circuit Voltage Adjustment Gain	0.00 to 5.00	1.00	0	0	0
tall	L3-21	Accel/Decel Rate Calculation Gain	0.00 to 200.00	1.00	0	0	0
S		Deceleration Time at Stall	0.0 to				
	L3-22	Prevention during Acceleration Automatic Reduction Selection	6000.0	0.0 s	×	×	0
	L3-23	for Stall Prevention during Run	0,1	0	0	0	0
	L3-24	Motor Acceleration Time for Inertia Calculations	0.001 to 10.000	dep. on drive capacity	0	0	0
	L3-25	Load Inertia Ratio	0.0 to 1000.0	1.0	0	0	0
	L4-01	Speed Agreement Detection Level	0.0 to 400.0	0.0 Hz	0	0	0
u	L4-02	Speed Agreement Detection Width	0.0 to 20.0	2.0 Hz	0	0	0
ecti	L4-03	Speed Agreement Detection Level (+/-)	-400.0 to 400.0	0.0 Hz	0	0	0
Frequency Detection	L4-04 L4-05	Speed Agreement Detection Width (+/-) Frequency Reference Loss	0.0 to 20.0 0,1	2.0 Hz 0	0	0	0
duenc	L4-05	Detection Selection Frequency Reference at Reference Loss	0,1 0.0 to 100.0	0 80.0%	0	0	0
Fre	L4-08	Frequency Detection Conditions	0.0 10 100.0	0.0%	0	0	0
	L4-07	Speed Agreement Condition Selection	0,1	0	0	0	0
iet	L5-01	Number of Auto Restart Attempts	0 to 10	0	Õ	0	0
Res	L5-02	Auto Restart Operation Selection	0,1	0	Õ	0	Õ
Fault Reset	L5-04	Fault Reset Interval Time	0.5 to 600.0	10.0 s	Ō	0	Ō
Fau	L5-05	Fault Reset Operation Selection	0,1	0	0	0	0
	L6-01	Torque Detection Selection 1	0 to 8	0	0	0	0
	L6-02	Torque Detection Level 1	0 to 300	150%	\bigcirc	0	0
ion			0.0 to 10.0	0.1 s	0	0	0
ecti	L6-04	Torque Detection Selection 2	0 to 8	0	0	0	0
)etε	L6-05	Torque Detection Level 2	0 to 300	150%	0	0	0
еГ	L6-06	Torque Detection Time 2	0.0 to 10.0	0.1 s	0	0	0
Overtorque Detection	L6-08	Mechanical Weakening (oL5) Detection Operation	0 to 8	0	0	0	0
Over	L6-09	Mechanical Weakening Detection Speed Level	-110.0 to 110.0	110%	0	0	0
	L6-10	Mechanical Weakening Detection Time	0.0 to 10.0	0.1 s	0	0	0
	L6-11	Mechanical Weakening Detection Start Time	0 to 65535	0	0	0	0

*1: Default setting depends on the control mode.
*2: L1-22 and L1-23 can only be displayed / setting when C6-02=B.
*3: Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.

E					Con	trol M	lode	c					Con	trol M	lode
Function	No.	Name	Range	Def*1	V/f	OLV	PM	Function	No.	Name	Range	Def*1	V/f	OLV	PM
Ē	L7-01	Forward Torque Limit	0 to 300	200%	×	0	×	Ē	o2-01	LO/RE Key Function Selection	0,1	1	0	0	0
it	L7-02	Reverse Torque Limit	0 to 300	200%	×	Õ	×	s l	02-02	STOP Key Function Selection	0,1	1	Õ	Õ	Õ
Lin		Forward Regenerative Torque Limit	0 to 300	200%	×	0	×	ion	o2-03	User Parameter Default Value	0 to 2	0	0	0	0
Torque Limit		Reverse Regenerative Torque Limit	0 to 300	200%	××	0	××	Operator Keypad Functions	02-04	Drive Model Selection	0 to FF	dep. on drive	0	0	0
Torc	L7-06	Torque Limit Integral Time Constant Torque Limit Control Method	5 to 10000	200 ms	~		<u> </u>	Ц Ц Ц		Frequency Reference Setting		capacity			
· ·	L7-07	Selection during Accel/Decel	0,1	0	×	0	×	pac	o2-05	Method Selection	0,1	0	0	0	0
	10.01	Internal Dynamic Braking Resistor	0.1	0	0	0	0	¥e)	-0.00	Operation Selection when Digital	0.1	0	_	0	0
	L8-01	Protection Selection (ERF type)	0,1	0	0	0	0	to _	o2-06	Operator is Disconnected	0,1	0	0	0	
	L8-02	Overheat Alarm Level	50 to 130	dep. on drive	0	0	0	era	o2-07	Motor Direction at Power Up	0,1	0	0	0	0
		Overheat Pre-Alarm		capacity				g		when Using Operator	,				
	L8-03	Operation Selection	0 to 4	3	0	0	0		o2-09	Initialization mode	0 to 3	dep. on drive spec.	0	0	0
	L8-05	Input Phase Loss Protection Selection	0,1	0	0	0	0	Copy/Read Fundions	o3-01	Copy Function Selection	0 to 3	0	0	0	0
	L8-07	Output Phase Loss Protection	0 to 2	1	0	0	0	Copy	03-02	Copy Allowed Selection	0, 1	0	0	0	0
Ę	L8-09	Output Ground Fault	0,1	dep. on drive	0	0	0		04-01	Accumulated Operation Time Setting	0 to 9999	0	0	0	0
ctio	L8-10	Detection Selection Heatsink Cooling Fan Operation Selection	0,1	capacity 0	0	0	0	g	o4-02 o4-03	Accumulated Operation Time Selection Cooling Fan Operation Time Setting	0,1 0 to 9999	0	0	0	0
ote		Heatsink Cooling Fan Operation Delay Time	0 to 300	60 s	0	0	0	Period	04-05	Capacitor Maintenance Setting	0 to 150	0%	0	0	0
e Pi		Ambient Temperature Setting	-10 to 50	40°C	Ō	Ō	0	е В	04-07	Soft Charge Bypass Relay	0 to 150			0	0
Hardware Protection	L8-15	oL2 Characteristics Selection at Low Speeds	0,1	1	0	0	0	Maintenance		Maintenance Setting		0%	0		
ardv	L8-18	Soft CLA Selection	0,1	dep. on C6-02	0	0	×	ten	04-09	IGBT Maintenance Setting	0 to 150	0%	0	0	0
Τ̈́		Frequency Reduction Rate	,					lain	04-11 04-12	U2, U3 Initialize Selection kWh Monitor Initialize Selection	0,1	0	0	0	0
	L8-19	during oH Pre-Alarm	0.1 to 1.0	0.8	0	0	0	≥		Number of Run Commands	,				
	L8-29	Current Unbalance Detection (LF2)	0,1	1	×	×	0	L	o4-13	Initialize Selection	0,1	0	0	0	0
		Installation Method Selection	0 to 3	dep. on drive	0	0	0	DWEZ Parameters	q1-01						
		Carrier Frequency Reduction	0 to 2	capacity	0	0	0	DWE	to q6-07	DWEZ Parameters	-	-	0	0	0
		Carrier Frequency Reduction Time High Current Alarm Selection	0.00 to 2.00 0,1	0.50	0	0	0	– ^B	r1-01	DWEZ Connection Parameter 1 (upper)		0	×	0	0
	L8-51	STO Level	0, 1 0.0 to 150.0	0.0%	○ ×	×	$\overline{0}$		r1-01	DWEZ Connection Parameter 1 (upper)		0	×	0	
	L8-54	STO Bias Detection Selection	0,1	1	×	×	Õ		r1-02	DWEZ Connection Parameter 2 (upper)		0	×	Õ	Õ
	n1-01	Hunting Prevention Selection	0,1	1	0	×	×		r1-04	DWEZ Connection Parameter 2 (lower)		0	×	0	0
Hunting Prevention	n1-02	Hunting Prevention Gain Setting	0.00 to 2.50	1.00	0	×	×		r1-05	DWEZ Connection Parameter 3 (upper)		0	×	0	0
Hunt	n1-03	Hunting Prevention Time Constant	0 to 500	dep. on drive	0	×	×		r1-06	DWEZ Connection Parameter 3 (lower)		0	×	0	0
1 2	n1-05	Hunting Prevention Gain while in Reverse	0.00 to 2.50	capacity 0.00	0	×	×		r1-07 r1-08	DWEZ Connection Parameter 4 (upper) DWEZ Connection Parameter 4 (lower)		0	×	0	0
tion		Speed Feedback Detection	i						r1-09	DWEZ Connection Parameter 5 (upper)		0	×	0	0
Speed Feedback Detection Control Function	n2-01	Control (AFR) Gain	0.00 to 10.00	1.00	×	0	×		r1-10	DWEZ Connection Parameter 5 (lower)		0	×	0	0
back [Func	n2-02	Speed Feedback Detection	0 to 2000	50 ms	×	0	×		r1-11	DWEZ Connection Parameter 6 (upper)		0	×	0	0
Feedt	112 02	Control (AFR) Time Constant	0 10 2000						r1-12	DWEZ Connection Parameter 6 (lower)		0	×	0	0
beed	n2-03	Speed Feedback Detection Control (AFR) Time Constant 2	0 to 2000	750 ms	×	0	×		r1-13 r1-14	DWEZ Connection Parameter 7 (upper) DWEZ Connection Parameter 7 (lower)		0	×	0	0
		High-Slip Braking Deceleration							r1-15	DWEZ Connection Parameter 8 (upper)		0	×	0	0
ing	n3-01	Frequency Width	1 to 20	5%	0	×	×	ters	r1-16	DWEZ Connection Parameter 8 (lower)		0	×	0	0
Braking		High-Slip Braking Current Limit		150%	0	×	×	Parameters	r1-17	DWEZ Connection Parameter 9 (upper)		0	×	0	0
Slip B		High-Slip Braking Dwell Time at Stop		1.0 s	0	×	××	are	r1-18	DWEZ Connection Parameter 9 (lower)		0	×	0	0
IS-C		High-Slip Braking Overload Time Overexcitation Deceleration Gain	1.00 to 1.40	40 s 1.10	0	$\hat{\circ}$	×		r1-19 r1-20	DWEZ Connection Parameter 10 (upper) DWEZ Connection Parameter 10 (lower)		0	×	0	0
High-	n3-21	High-Slip Suppression Current Level	0 to 150	100%	Õ	Õ	X	ectio	r1-21	DWEZ Connection Parameter 11 (upper)	0000 to FFFF(H)	0	×	Ō	Õ
		Overexcitation Operation Selection	0 to 2	0	Õ	Õ	×	Connection	r1-22	DWEZ Connection Parameter 11 (lower)		0	×	0	0
Online Tuning of Motor Line-to-Line Resistance								ő		DWEZ Connection Parameter 12 (upper)		0	×	0	0
uning of ne Resi	n6-01	Line-to-Line Motor	0,1	1	×	0	×	DWEZ	r1-24	DWEZ Connection Parameter 12 (lower)		0	×	0	0
Inline Ti ne-to-Li		Resistance Online Tuning								DWEZ Connection Parameter 13 (upper) DWEZ Connection Parameter 13 (lower)		0	×	0	0
Li C	n8-45	Speed Feedback Detection Control Gain	0.0 to 10.0	0.8	×	×	0		r1-27	DWEZ Connection Parameter 13 (lower)		0	×	0	0
_	n8-47	Pull-In Current Compensation Time Constant	0.0 to 100.0	5.0 s	×	×	0			DWEZ Connection Parameter 14 (lower)	1	0	×	0	0
ntro		Pull-In Current	0,20 to 200	30%	×	×	0		r1-29	DWEZ Connection Parameter 15 (upper)		0	×	0	0
ပိ	n8-49	Load Current	-200.0 to 200.0	0.0%	×	×	0			DWEZ Connection Parameter 15 (lower)		0	×	0	0
otor	n8-51 n8-54	Acceleration Pull-In Current Voltage Error Compensation Time Constant	0 to 200 0.00 to 10.00	50% 1.00 s	××	××	0		r1-31 r1-32	DWEZ Connection Parameter 16 (upper) DWEZ Connection Parameter 16 (lower)		0	×	0	0
Permanent Magnet (PM) Motor Control	n8-55	Load Inertia	0 to 3	0	×	×	0		r1-32	DWEZ Connection Parameter 10 (lower)		0	×	0	0
PM)	n8-62*2	Output Voltage Limit	0.0 to 230.0	200.0 V	×	×	Õ		r1-34	DWEZ Connection Parameter 17 (lower)		0	×	Õ	0
et (I	n8-63	Output Voltage Limit Gain 1	0.00 to 100.00	1.00	×	×	0			DWEZ Connection Parameter 18 (upper)		0	×	0	0
agn	n8-65	Speed Feedback Detection Control	0.00 to	1.50	×	×	0		r1-36	DWEZ Connection Parameter 18 (lower)		0	×	0	0
Ň		Gain during ov Suppression Output Voltage Limit Gain 2	10.00 0.50 to 1.50	0.95	×	×	0		r1-37 r1-38	DWEZ Connection Parameter 19 (upper) DWEZ Connection Parameter 19 (lower)		0	×	0	0
lent	n8-87	Output Voltage Limit Gain 2	0.50 10 1.50	0.95	×	×	0		r1-30	DWEZ Connection Parameter 19 (lower)		0	×	0	0
nar		Output Voltage Limit Switch Current Level	0 to 400	400%	×	×	0		r1-40	DWEZ Connection Parameter 20 (lower)	<u> </u>	0	×	0	0
Jerr	n8-89	Output Voltage Limit Switch Current	0 to n8-88	3%	×	×	0		T1-00	Motor Selection 1/2	1,2	1	0	0	×
_		Hysteresis								Auto-Tuning Mode Selection	0,2,3	dep. on drive	0	0	×
		Output Voltage Limit Switch Speed Drive Mode Unit Monitor Selection	0 to 200 104 to 810	200%	×	×	0	bu	T1-02 T1-03*2	Motor Rated Power Motor Rated Voltage	0.03 to 650.00 0.0 to 255.5	capacity 200.0 V	0	0	××
ß		User Monitor Selection After Power Up	1 to 5	100	0	0	0	Ľ.		× • • • • • • • • • • • • • • • • • • •	10 to 200% of	dep. on drive			
Display Settings		Digital Operator Display Selection	0 to 3	0	Õ	0	0	Motor Tuning	T1-04	Motor Rated Current	drive rated current	drive capacity	0	0	×
iy Sƙ	o1-10	Frequency Reference Setting	1 to 60000	dan	0	0	0	Mot		Motor Base Frequency	0.0 to 400.0	60.0 Hz	0	0	×
ispla		and User-Set Display		dep. on drive		Ļ	\vdash			Number of Motor Poles	2 to 48	4	0	0	×
	01-11	Frequency Reference Setting / Decimal Display	0 to 3	capacity	0	0	0		T1-07 T1-11	Motor Base Speed Motor Iron Loss	0 to 24000 0 to 65535	1750 r/min 14 W	0	×	×
	I	Doointal Display	1			1			1 1 1 - 1 1	LUSS	10 10 00000	1 -+ VV	\cup		

*1: Default setting depends on the control mode.
 *2: Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.

Basic Instructions

Outstanding operability! Separate settings for each application enables quick set-up.

Operator Names and Functions

Data display (5-digit) — Displays frequency, parameter number, and other data.

LO/RE light Lights to indicate that the operator is set for LOCAL.

ESC key Lets the user back up to the previous display screen.

Right arrow key Scrolls the cursor to the right.

RESET key Resets a fault.

RUN light Lights when the Run command is present.

RUN key Issues a Run command.

Glossary

Used as a quick guide for the abbreviations used on the display screen. Details listed on the next page.

e devrigette is decharge des condernations. e répondre sus éxigentes CE a aleurer con

LED panel More information listed below.

LO/RE key

Determines where the Run command and frequency reference come from: the keypad (LOCAL) or the control terminals (REMOTE).

ENTER key

Press to enter values, edit parameters, and set the control mode. Press this key to proceed to the next screen when scrolling through various menu displays.

Com port

For connecting to a PC (DriveWizard or DriveWorksEZ), a USB copy unit or a LCD operator.

Up arrow key

Scrolls up through the display screen, and increases a selected value.

Down arrow key Scrolls down through the display screen, and

decreases a selected value. STOP key

Issues a Stop command.

8.8.8.8.8. Esc A Re Reset A Enter KIN STOP

LED Display Guide

	LED	ON	Flashing	OFF
	ALM	A fault has occurred.	 Alarm situation detected. Operator error (OPE) Auto-Tuning fault occurred. 	Normal operation
	REV	Motor is rotating in reverse.	<u> </u>	Motor is rotating forward.
	DRV	 In the "Drive Mode" Executing Auto-Tuning 	DriveWorksEZ is connected.	Programming Mode
-	FOUT	Output frequency	—	—
	e <u>uo</u> RE	Run command assigned to the operator (LOCAL)		Control assigned to remote location
		During run	During deceleration Run command is present but the frequency reference is zero.	Drive is stopped.

How the RUN light works:

Drive output f	requency				
Run comman	d	, ,	1		
Frequency re	ference				1
RUN light	OFF	ON	Flashing	OFF	Flashing

Operation Example

Using the LED Operator to Run the Drive

	Steps	Key	Result/Display
1 ↓	Turn the power on.		F 0.00
2	Set the drive for LOCAL. The frequency reference is displayed.	RE	LO should light.
3 ↓	Displays the direction (forward).	\land	For
4 ↓	Displays the output frequency.		0.0 0
5 ↓	Displays the output current.		0.00A
6 ↓	Displays the output voltage.		0.0 u
7 ↓	Displays the beginning of the Monitor Menu.		flashing Plon
8 ↓	Displays the top of the Verify Menu.		flashing urFy
9 ↓	Displays the top of the Setup Mode.		
i0 ↓	Displays the top of the parameter settings menu.		"PAr"
↓	Displays the top of the Auto-Tuning Mode.		[™] 8.୮Ս∩ [™]
	Returns back to the frequency reference display.	$\boldsymbol{\wedge}$	

Drive Mode: Run and Stop commands, displays operation status such as the frequency reference, output frequency, output current, output voltage, etc.

How to Monitor the Frequency Reference

	Steps	Key	Result/Display
•	Use the arrow keys to select the digits to set.		FÖ0.00 F00.00
	Press enter to save the new value.	Increase or decrease the value displayed.	FOĞ.00 "End" appears while the drive saves the new data. FOĞ.00 DRV DRV lights up.

Monitor Mode: Displays operation status and information on faults.

Steps	Key	Result/Display
Select a monitor.		U I-0 Î
Displays U1-01, the	ENTER	6.0 0
frequency reference monitor.	ESC	U I-O I
Select another		<u> </u>
monitor.		U I-26
Back up to the top of the Monitor Menu.	Esc Press once.	Plan
	Select a monitor. Displays U1-01, the frequency reference monitor. Select another monitor. Back up to the top of	Select a monitor. Displays U1-01, the frequency reference monitor. Select another monitor. Back up to the top of

Verify Menu: Lists all parameters that have been changed from their original default settings, either by the user or from Auto-Tuning.

-		•
Steps	Key	Result/Display
Lists parameters that have been changed in order. Pressing Enter displays the parameter value. Parameters that have been changed from their default values are listed in order.		C I-O I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.000000
Returns to the top of the Verify Menu.	Esc Press once.	ur F4

Press esc to go back to the previous display screen.

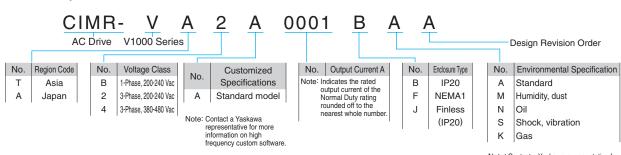
Setup Mode

The list of Applications Presets can be accessed in the Setup Mode. Each Application Preset automatically programs drive parameters to their optimal settings specific to the application selected. All parameters affected by the Application Preset are then listed as Preferred Parameters for quick access. Selecting a Water Supply Pump (A1-06=1)

Steps	Key	Result/Display
Application Selection	ENTER	* APPL *
	ENTER	ÖO
	RESET	٥Ö
Select, "Water Supply Pump".	A	DŤ
		"End" appears while the drive saves the new data.
All parameters relating to the preset values for a water supply pump application are then listed as	ENTER	`´ APPL`´
Preferred Parameters.	Scroll to the Preferred Parameter using the up arrow key and see which parameters have been selected.	

Water Su	Water Supply Pump Application Presets							
No.	Parameter Name	Optimum Setting						
A1-02	Control Method Selection	0: V/f control						
b1-04	Reverse Operation Selection	1: Reverse disabled						
C1-01	Acceleration Time 1	1.0 (s)						
C1-02	Deceleration Time 1	1.0 (s)						
C6-01	Normal/Heavy Duty Selection	1: Normal Duty (ND)						
E1-03	V/f Pattern Selection	0F (H)						
E1-07	Mid Output Frequency	30.0 (Hz)						
E1-08	Mid Output Frequency Voltage	50.0 (V)						
L2-01	Momentary Power Loss Operation Selection	1: Enabled						
L3-04	Stall Prevention Selection during Deceleration	1: Enabled						

Preferred Parameters


No.	Parameter Name	No.	Parameter Name					
b1-01	Frequency Reference Selection 1	E1-08	Mid Output Frequency Voltage (VC)					
b1-02	Run Command Selection 1	E2-01	Motor Rated Current					
b1-04	Reverse Operation Selection	H1-05	Multi-Function Digital Input Terminal S5 Function Selection					
C1-01	Acceleration Time 1	H1-06	Multi-Function Digital Input Terminal S6 Function Selection					
C1-02	Deceleration Time 1	H1-07	Multi-Function Digital Input Terminal S7 Function Selection					
E1-03	V/f Pattern Selection	L5-01	Number of Auto Restart Attempts					
E1-07	Mid Output Frequency	-	-					

Product Lineup

				Nu	mber in parenthesis indicates	the rated output current.
Motor Capacity kW	Three-Pha	ase 200 V	Single-Ph	ase 200 V	Three-Pha	ase 400 V
KVV	Normal Duty	Heavy Duty	Normal Duty	Heavy Duty	Normal Duty	Heavy Duty
0.1		CIMR-VA2A0001 (0.8 A)		CIMR-VABA0001 (0.8 A)		
0.2	CIMR-VA2A0001 (1.2 A)	CIMR-VA2A0002 (1.6 A)	CIMR-VABA0001 (1.2 A)	CIMR-VABA0002 (1.6 A)		CIMR-VA4A0001 (1.2 A)
0.4	CIMR-VA2A0002 (1.9 A)	CIMR-VA2A0004 (3 A)	CIMR-VABA0002 (1.9 A)	CIMR-VABA0003 (3 A)	CIMR-VA4A0001 (1.2 A)	CIMR-VA4A0002 (1.8 A)
0.75	CIMR-VA2A0004 (3.5 A)	CIMR-VA2A0006 (5 A)	CIMR-VABA0003 (3.3 A)	CIMR-VABA0006 (5 A)	CIMR-VA4A0002 (2.1 A)	CIMR-VA4A0004 (3.4 A)
1.1	CIMR-VA2A0006 (6 A)	CIMR-VA2A0008* (6.9 A)	CIMR-VABA0006 (6 A)			
1.5	CIMR-VA2A0008* (8 A)	CIMR-VA2A0010 (8 A)		CIMR-VABA0010 (8 A)	CIMR-VA4A0004 (4.1 A)	CIMR-VA4A0005 (4.8 A)
2.2	CIMR-VA2A0010 (9.6 A)	CIMR-VA2A0012 (11 A)	CIMR-VABA0010 (9.6 A)	CIMR-VABA0012 (11 A)	CIMR-VA4A0005 (5.4 A)	CIMR-VA4A0007 (5.5 A)
3.0	CIMR-VA2A0012 (12 A)	CIMR-VA2A0018* (14 A)	CIMR-VABA0012 (12 A)		CIMR-VA4A0007 (6.9 A)	CIMR-VA4A0009 (7.2 A)
3.7	CIMR-VA2A0018* (17.5 A)	CIMR-VA2A0020 (17.5 A)		CIMR-VABA0018 (17.5 A)	CIMR-VA4A0009 (8.8 A)	CIMR-VA4A0011 (9.2 A)
5.5	CIMR-VA2A0020 (19.6 A)	CIMR-VA2A0030 (25 A)			CIMR-VA4A0011 (11.1 A)	CIMR-VA4A0018 (14.8 A)
7.5	CIMR-VA2A0030 (30 A)	CIMR-VA2A0040 (33 A)			CIMR-VA4A0018 (17.5 A)	CIMR-VA4A0023 (18 A)
11	CIMR-VA2A0040 (40 A)	CIMR-VA2A0056 (47 A)			CIMR-VA4A0023 (23 A)	CIMR-VA4A0031 (24 A)
15	CIMR-VA2A0056 (56 A)	CIMR-VA2A0069 (60 A)			CIMR-VA4A0031 (31 A)	CIMR-VA4A0038 (31 A)
18.5	CIMR-VA2A0069 (69 A)				CIMR-VA4A0038 (38 A)	

*: Available in Japan only

Model Number Key

Note: Contact a Yaskawa representative for more on environmental specifications.

Optimizing Control for Each Application

V1000 offers two separate performance ratings: Normal Duty and Heavy Duty.

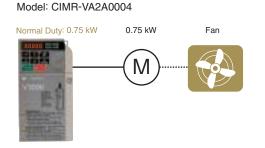
Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor.

Difference between load ratings:

	Normal Duty Rating	Heavy Duty Rating
Parameter settings	C6-01 = 1 (default)	C6-01 = 0
Overload tolerance	120% for 60 s	150% for 60 s
Carrier frequency	Low carrier frequency (Swing PMW)*	High carrier frequency

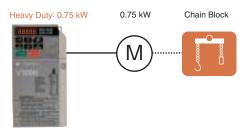
*: Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency.

Normal Duty Applications


Heavy Duty Applications

The applications shown above can still use the ND rating, provided that the maximum torque required is no more than 120% for 60 s.

•Selecting a Drive


For a fan application using a 0.75 kW motor, select CIMR-VA2A0004 and set it for Normal Duty performance.

Selecting a Drive

For a chain block application using a 0.75 kW motor, select CIMR-VA2A0006 and set it for Heavy Duty performance.

Model: CIMR-VA2A0006

Use the table below to transition from VS mini V7 to the V1000 series (assumes a Heavy Duty rating).

Power		20	40	0 V			
Supply	Three-	Phase	Phase	Three-Phase			
Max. Model Applicable	VS mini V7	V1000	VS mini V7	V1000	VS mini V7	V1000	
Motor	CIMR-	CIMR-	CIMR-	CIMR-	CIMR-	CIMR-	
Capacity kW	V7AA2	VA2A	V7AAB	VABA	V7AA4	VA4A	
0.1	0P1	0001	0P1	0001	—	_	
0.2	0P2	0002	0P2	0002	0P2	0001	
0.4	0P4	0004	0P4	0003	0P4	0002	
0.75	0P7	0006	0P7	0006	0P7	0004	
1.5	1P5	0010	1P5	0010	1P5	0005	
2.2	2P2	0012	2P2	0012	2P2	0007	
3.7	3P7	0020	3P7	0018	3P7	0011	
5.5	5P5	0030	—	_	5P5	0018	
7.5	7P5	0040	_	_	7P5	0023	
11	_	0056	_	_	_	0031	
15	_	0069	_	_	—	0038	

Parameter C6-01 sets the drive for Normal Duty or Heavy Duty performance.

200 V Class (Three-Phase/Single-Phase)

Value in brackets is for a single-phase drive.

20	200 V Class (Inree-Phase/Single-Phase) Value in brackets is for a single-phase drive.															
Moc	Three-Phase C	IMR-V	A2A	0001	0002	0004	0006	0008*10	0010	0012	0018*10	0020	0030	0040	0056	0069
WIOC	Single-Phase*2 C	IMR-V	ABA	0001	0002	0003	0006	-	0010	0012	-	0018 *1	-	-	-	-
M	ax. Applicable Motor		Normal Duty	0.2	0.4	0.75	1.1	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0	18.5
Ca	apacity*3	kW	Heavy Duty	0.1	0.2	0.4	0.75	1.1	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0
		Three-	Normal Duty	1.1	1.9	3.9	7.3	8.8	10.8	13.9	18.5	24.0	37.0	52.0	68.0	80.0
Input	Rated Input	phase	Heavy Duty	0.7	1.5	2.9	5.8	7.0	7.5	11.0	15.6	18.9	24.0	37.0	52.0	68.0
<u>L</u>	Current*4 A	Single-	Normal Duty	2.0	3.6	7.3	13.8	-	20.2	24.0	-	-	-	-	-	-
		phase	Heavy Duty	1.4	2.8	5.5	11.0	-	14.1	20.6	-	35.0	-	-	-	-
	Rated Output		Normal Duty*6	0.5	0.7	1.3	2.3	3.0	3.7	4.6	6.7	7.5	11.4	15.2	21.3	26.3
	Capacity*5	kVA	Heavy Duty	0.3 *7	0.6 *7	1.1 *7	1.9 * ⁷	2.6 *8	3.0 *8	4.2 *8	5.3 *8	6.7 *8	9.5 *8	12.6 *8	17.9 *8	22.9 *8
	Rated Output Curren	t A	Normal Duty*6	1.2	1.9	3.5 (3.3)	6.0	8.0	9.6	12.0	17.5	19.6	30.0	40.0	56.0	69.0
	nated Output Outfell		Heavy Duty	0.8 *7	1.6 *7	3.0 *7	5.0 * ⁷	6.9 *8	8.0 *8	11.0 *8	14.0 *8	17.5 *8	25.0 *8	33.0 *8	47.0 *8	60.0 *8
Output	Overload Tolerance			Normal Duty Rating: 120% of rated output current for 60 s. Heavy Duty Rating: 150% of rated output current for 60 s. (Derating may be required for repetitive loads)												
	Carrier Frequency			2 kHz (user-set, 2 to 15 kHz possible)												
	Max. Output Voltage				Three-phase power supply: three-phase 200 to 240 V (relative to input voltage) Single-phase power supply: three-phase 200 to 240 V (relative to input voltage)											
	Max. Output Frequer	псу							400 H	Hz (use	r-set)					
	Rated Voltage/Rated	Frequ	ency			AC powe AC powe							power s	upply: 27	'0 to 340	V *9
	Allowable Voltage Flu	uctuatio	on						-1	5 to +10)%					
ver	Allowable Frequency	Fluctu	ation							±5%						
Power		Three-	Normal Duty	0.5	0.9	1.8	3.3	4.0	4.9	6.4	8.5	11.0	17.0	24.0	31.0	37.0
	Power Supply kVA	phase	Heavy Duty	0.3	0.7	1.3	2.7	3.2	3.4	5.0	7.1	8.6	11.0	17.0	24.0	31.0
	rowerouppiy kvA	Single-	Normal Duty	0.5	1.0	1.9	3.6	-	5.3	6.3	-	-	-	-	-	-
		phase	Heavy Duty	0.4	0.7	1.5	2.9	-	3.7	5.4	-	9.2	-	-	-	-

*1: Heavy Duty (3.7 kW) only.

*2: Drives with a single-phase power supply input have three-phase output. Single-phase motors cannot be used.

*3: The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 200 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.

*4: Value displayed is for the input current when operating Yaskawa standard motors of max. applicable capacity with the rated load at the rated motor speed. This value may fluctuate based on the power supply side impedance, as well as the power supply transformer, input side reactor, and wiring conditions.

*5: Rated output capacity is calculated with a rated output voltage of 220 V.

*6: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.

*7: This value assumes a carrier frequency of 10 kHz. Increasing the carrier frequency requires a reduction in current.

*8: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current.

*9: Not compliant with UL or CE standards when using a DC power supply.

*10: These models are available in Japan only.

400 V Class (Three-phase)

odel CIMR-VA4A		0001	0002	0004	0005	0007	0009	0011	0018	0023	0031	0038
ax. Applicable Motor	Normal Duty	0.4	0.75	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0	18.5
apacity*1 kW	Heavy Duty	0.2	0.4	0.75	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0
Deted Input Current*2	Normal Duty	1.2	2.1	4.3	5.9	8.1	9.4	14.0	20.0	24.0	38.0	44.0
Rated input Current** A	Heavy Duty	1.2	1.8	3.2	4.4	6.0	8.2	10.4	15.0	20.0	29.0	39.0
Rated Output	Normal Duty*4	0.9	1.6	3.1	4.1	5.3	6.7	8.5	13.3	17.5	23.6	29.0
Capacity*3 kVA	Heavy Duty*5	0.9	1.4	2.6	3.7	4.2	5.5	7.0	11.3	13.7	18.3	23.6
	Normal Duty*4	1.2	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23.0	31.0	38.0
Rated Output Current A	Heavy Duty*5	1.2	1.8	3.4	4.8	5.5	7.2	9.2	14.8	18.0	24.0	31.0
Overload Tolerance		Normal Duty Rating: 120% of rated output current for 60 s. Heavy Duty Rating: 150% of rated output current for 60 s. (Derating may be required for repetitive loads)										
Carrier Frequency		2 kHz (user-set, 2 to 15 kHz possible)										
Max. Output Voltage		Three-phase 380 to 480 V (relative to input voltage)										
Max. Output Frequency			400 Hz (user-set)									
Rated Voltage/Rated Freque	ency	Three-phase AC power supply 380 to 480 V 50/60 Hz DC power supply: 510 to 680 V *6										
Allowable Voltage Fluctuation	on					-1	15 to +10	%				
Allowable Frequency Fluctuation							±5%					
Power Supply k//	Normal Duty	1.1	1.9	3.9	5.4	7.4	8.6	13.0	18.0	22.0	35.0	40.0
Power Supply kVA	Heavy Duty	1.1	1.6	2.9	4.0	5.5	7.5	9.5	14.0	18.0	27.0	36.0
	odel CIMR-VA4A ax. Applicable Motor apacity*1 kW Rated Input Current*2 A Rated Output Capacity*3 kVA Rated Output Current A Querload Tolerance Carrier Frequency Max. Output Voltage Max. Output Frequency Rated Voltage/Rated Frequ Allowable Voltage Fluctuation	odel CIMR-VA4A ax. Applicable Motor apacity*1 Normal Duty apacity*1 kW Rated Input Current*2 A Rated Output Capacity*3 Normal Duty*4 Capacity*3 kVA Heavy Duty*5 Rated Output Current A Overload Tolerance Carrier Frequency Max. Output Voltage Max. Output Frequency Rated Voltage/Rated Frequency Allowable Voltage Fluctuation Allowable Frequency Fluctuation Power Supply	Odel CIMR-VA4A 0001 ax. Applicable Motor apacity*1 Normal Duty 0.4 apacity*1 kW Heavy Duty 0.2 Rated Input Current*2 A Normal Duty 1.2 Rated Output Capacity*3 Normal Duty*4 0.9 Rated Output Capacity*3 Normal Duty*4 0.9 Rated Output Current A Normal Duty*5 0.9 Rated Output Current A Normal Duty*5 1.2 Overload Tolerance Vormal Duty*5 1.2 Overload Tolerance Max. Output Voltage Max. Output Voltage Max. Output Voltage Max. Output Frequency Three- Allowable Voltage Fluctuation Allowable Frequency Fluctuation 1.1 Power Supply KVA Normal Duty 1.1	OdelCIMR-VA4A00010002ax. Applicable Motor apacity*1Normal Duty0.40.75apacity*1kWHeavy Duty0.20.4Rated Input Current*2 Capacity*3Normal Duty1.22.1Heavy Duty1.21.8Normal Duty*40.91.6Capacity*3kVAHeavy Duty*50.91.4Rated Output Capacity*3Normal Duty*41.22.1Heavy Duty*50.91.4Normal Duty*41.22.1Heavy Duty*51.21.8Overload ToleranceVormal Duty*51.2Carrier FrequencyMax. Output VoltageMax. Output VoltageMax. Output Voltage FluctuationThree-phase AAllowable Voltage FluctuationAllowable Frequency Fluctuation1.1Power SupplyKVANormal Duty1.1	Odel CIMR-VA4A 0001 0002 0004 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 apacity*1 kW Heavy Duty 0.2 0.4 0.75 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 Rated Output Current Normal Duty*4 0.9 1.6 3.1 Rated Output Current A Normal Duty*4 1.2 2.1 4.1 Heavy Duty*5 0.9 1.4 2.6 Normal Duty*4 1.2 1.8 3.4 Overload Tolerance Normal Duty*5 1.2 1.8 3.4 Normal Heavy ((I Carrier Frequency Max. Output Voltage Three Three Normal Meavy ((I Max. Output Voltage Fluctuation A Normal Duty 1.1 1.9 3.9 Allowable Voltage Fluctuation	Odel CIMR-VA4A 0001 0002 0004 0005 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 2.2 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 5.9 Heavy Duty 1.2 1.8 3.2 4.4 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 4.1 Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 Rated Output Current A Normal Duty*4 1.2 2.1 4.1 5.4 Heavy Duty*5 1.2 1.8 3.4 4.8 Overload Tolerance Vormal Duty*5 1.2 1.8 3.4 4.8 Overload Tolerance Z KHz Normal Duty Rat (Derating Carrier Frequency 2 kHz Max. Output Voltage Three-phase AC power supply 3 Allowable Voltage Fluctuation	Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 ax. Applicable Motor apacity*1 kW Heavy Duty 0.4 0.75 1.5 2.2 3.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 5.9 8.1 Heavy Duty 1.2 1.8 3.2 4.4 6.0 Rated Output Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 Rated Output Current Capacity*3 A Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 Rated Output Current Carrier Frequence A Normal Duty*4 1.2 2.1 4.1 5.4 6.9 Overload Tolerance Normal Duty*5 1.2 1.8 3.4 4.8 5.5 Overload Tolerance Z KHz (user-see Max. Output Vatage Three-phase AC power supply 3	Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 5.9 8.1 9.4 Heavy Duty 1.2 1.8 3.2 4.4 6.0 8.2 Rated Output Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 5.5 Rated Output Current A Normal Duty*4 1.2 2.1 4.1 5.4 6.9 8.8 Rated Output Current A Normal Duty*4 1.2 1.8 3.4 4.8 5.5 7.2 <td< td=""><td>Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 5.5 apacity*1 KW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 Heavy Duty 1.2 1.8 3.2 4.4 6.0 8.2 10.4 Rated Output Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 5.5 7.0 Rated Output Current A Normal Duty*4 1.2 1.8 3.4 4.8 5.5 7.2 9.2 Overload Tolerance Voreload Tolerance Vormal Duty*4</td></td<> <td>Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 0018 ax. Applicable Motor apacity*1 kW Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 Rated Output Capacity*3 Normal Duty* 1.2 1.8 3.2 4.4 6.0 8.2 10.4 15.0 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 Rated Output Current A Rated Output Current A Normal Duty*4 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 Rated Output Current A Normal Duty*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 Overload Tolerance Verloat Tolerance Verloat Tolerance Verloat Tolerance<td>Odel CIMR-VA4A 0001 0002 0004 0005 0007 0009 0011 0018 0023 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 Rated Input Current*2 A Normal Duty*1 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 24.0 Rated Output Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 5.5 7.0 11.3 13.7 Rated Output Current A Heavy Duty*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 18.0 <td>Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 0018 0023 0031 ax. Applicable Motor apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 24.0 38.0 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 17.5 23.6 Rated Output Current A Capacity*3 Normal Duty*4 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 23.0 31.0 Rated Output Current A Capacity*3 Normal Duty*4 1.2 <t< td=""></t<></td></td></td>	Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 5.5 apacity*1 KW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 Heavy Duty 1.2 1.8 3.2 4.4 6.0 8.2 10.4 Rated Output Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 5.5 7.0 Rated Output Current A Normal Duty*4 1.2 1.8 3.4 4.8 5.5 7.2 9.2 Overload Tolerance Voreload Tolerance Vormal Duty*4	Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 0018 ax. Applicable Motor apacity*1 kW Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 Rated Input Current*2 A Normal Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 Rated Output Capacity*3 Normal Duty* 1.2 1.8 3.2 4.4 6.0 8.2 10.4 15.0 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 Rated Output Current A Rated Output Current A Normal Duty*4 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 Rated Output Current A Normal Duty*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 Overload Tolerance Verloat Tolerance Verloat Tolerance Verloat Tolerance <td>Odel CIMR-VA4A 0001 0002 0004 0005 0007 0009 0011 0018 0023 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 Rated Input Current*2 A Normal Duty*1 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 24.0 Rated Output Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 5.5 7.0 11.3 13.7 Rated Output Current A Heavy Duty*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 18.0 <td>Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 0018 0023 0031 ax. Applicable Motor apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 24.0 38.0 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 17.5 23.6 Rated Output Current A Capacity*3 Normal Duty*4 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 23.0 31.0 Rated Output Current A Capacity*3 Normal Duty*4 1.2 <t< td=""></t<></td></td>	Odel CIMR-VA4A 0001 0002 0004 0005 0007 0009 0011 0018 0023 ax. Applicable Motor apacity*1 Normal Duty 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 Rated Input Current*2 A Normal Duty*1 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 24.0 Rated Output Capacity*3 kVA Heavy Duty*5 0.9 1.4 2.6 3.7 4.2 5.5 7.0 11.3 13.7 Rated Output Current A Heavy Duty*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 18.0 <td>Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 0018 0023 0031 ax. Applicable Motor apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 24.0 38.0 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 17.5 23.6 Rated Output Current A Capacity*3 Normal Duty*4 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 23.0 31.0 Rated Output Current A Capacity*3 Normal Duty*4 1.2 <t< td=""></t<></td>	Odel CIMR-VA4A Normal Duty 0.001 0002 0004 0005 0007 0009 0011 0018 0023 0031 ax. Applicable Motor apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 0.2 0.4 0.75 1.5 2.2 3.0 3.7 5.5 7.5 11.0 15.0 apacity*1 kW Heavy Duty 1.2 2.1 4.3 5.9 8.1 9.4 14.0 20.0 24.0 38.0 Rated Output Capacity*3 Normal Duty*4 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 17.5 23.6 Rated Output Current A Capacity*3 Normal Duty*4 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 23.0 31.0 Rated Output Current A Capacity*3 Normal Duty*4 1.2 <t< td=""></t<>

*1: The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 400 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current. *2: Value displayed is for the input current when operating Yaskawa standard motors of max. applicable capacity with the rated load at the rated motor speed. This

value may fluctuate based on the power supply side impedance, as well as the power supply transformer, input side reactor, and wiring conditions. *3: Rated output capacity is calculated with a rated output voltage of 440 V.

*4: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.

*5: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current.

*6: Not compliant with UL or CE standards when using a DC power supply.

20

Common Specifications

Rotational Auto-Tuning must be performed to achieve the performance described with Open Loop Vector Control.

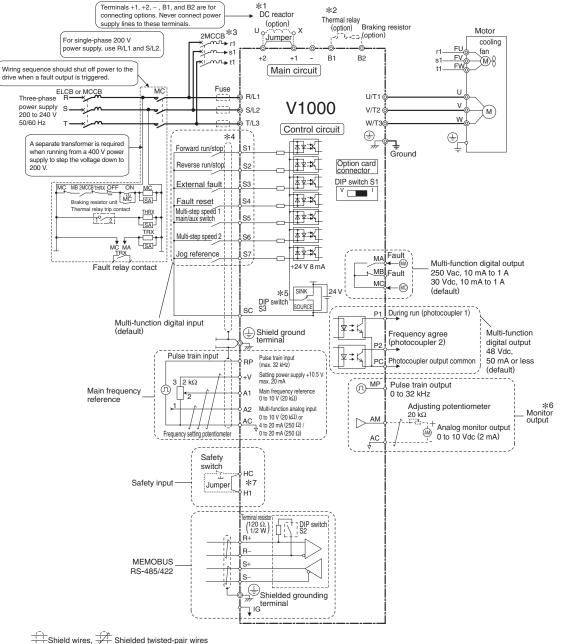
	Item	Specifications
	Control Method Frequency Control Range	Open Loop Vector Control (Current Vector), V/f Control, PM Open Loop Vector Control (for SPM and IPM motors) 0.01 to 400 Hz
		Digital reference: within ±0.01% of the max. output frequency (-10 to +50°C)
	Frequency Accuracy (Temperature Fluctuation)	Analog reference: within $\pm 0.1\%$ of the max. output frequency ($\pm 10.0\%$ C)
	•	Digital reference: 0.01 Hz
	Frequency Setting Resolution	Analog reference: 1/1000 of max. frequency
	Output Frequency Resolution	20 bit of maximum output frequency (parameter E1-04 setting)
	Frequency Setting Resolution	Main frequency reference: 0 to 10 Vdc (20 k Ω), 4 to 20 mA (250 Ω), 0 to 20 mA (250 Ω) Main speed reference : Pulse Train Input (max. 32 kHz)
Control Characteristics	Starting Torque	200% / 0.5 Hz (assumes Heavy Duty rating IM of 3.7 kW or less using Open Loop Vector Control), 50% / 6 Hz (assumes PM Open Loop Vector Control)
teri	Speed Control Range	1:100 (Open Loop Vector Control), 1:20 to 40 (V/f Control), 1:10 (PM Open Loop Vector Control)
rac	Speed Control Accuracy	±0.2% in Open Loop Vector Control (25 ±10°C) *1
Cha	Speed Response	5 Hz in Open Loop Vector (25 ±10°C) (excludes temperature fluctuation when performing Rotational Auto-Tuning)
	Torque Limit	Open Loop Vector Control allows separate settings in four quadrants
ontr	Accel/Decel Time	0.0 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
Ŭ	Braking Torque	 Short-time decel torque*^{2:} over 150% for 0.1/0.2 kW motors, over 100% for 0.4/ 0.75 kW motors, over 50% for 1.5 kW motors, and over 20% for 2.2 kW and above motors (overexcitation braking/High-Slip Braking: approx. 40%) Continuous regen. torque: approx. 20% (approx. 125% with dynamic braking resistor option*^{3:} 10% ED, 10 s, internal braking transistor)
	V/f Characteristics	User-selected programs, V/f preset patterns possible
	Main Control Functions	Momentary power loss ride-thru, Speed search, Overtorque detection, Torque limit, 17-step speed (max), Accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-tuning (rotational, stationary tuning for resistance between lines), Dwell, Cooling fan on/off switch, Slip compensation, Torque compensation, Frequency jump, Upper/lower limits for frequency reference, DC injection braking at start and stop, Overexcitation braking, High slip braking, PID control (with sleep function), Energy saving control, MEMOBUS comm. (RS-485/422 max, 115.2 kbps), Fault restart, Application presets, DriveWorksEZ (customized function), Removable terminal block with parameter backup function
	Motor Protection	Motor overheat protection based on output current
	Momentary Overcurrent Protection	Drive stops when output current exceeds 200% of Heavy Duty Rating
	Overload Protection	Drive stops after 60 s at 150% of rated output current (Heavy Duty Rating)*4
ion	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. 410 V 400 V class: Stops when DC bus exceeds approx. 820 V (approx. 740 V when power supply voltage is less than 400 V)
Protection Function	Undervoltage Protection	Three-phase 200 V class: Stops when DC bus falls below approx. 190 V Single-phase 200 V class: Stops when DC bus falls below approx. 160 V Three-phase 400 V class: Stops when DC bus falls below approx. 380 V (approx. 350 V when the power supply voltage is less than 400 V)
tect	Momentary Power Loss Ride-Thru	Stops after approx. 15 ms (default). Parameter settings allow the drive to continue running if power loss lasts for up to approx. 2 s *5
D.O.	Heatsink Overheat Protection	Protection by thermistor
	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF-type, 3% ED)
	Stall Prevention	Separate settings allowed during acceleration, and during run. Enable/disable only during deceleration.
	Ground Fault Protection	Protection by electronic circuit *6
	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V
ent	Area of Use	Indoors
Dum(Ambient Temperature	-10 to +50°C (open chassis), -10 to +40°C (NEMA Type 1)
invirc	Humidity	95 RH% or less (no condensation)
ing E	Storage Temperature	-20 to +60°C (short-term temperature during transportation)
Operating Environment	Altitude	Up to 1000 meters
do	Shock	10 to less than 20 Hz (9.8 m/s ²) max., 20 to 55 Hz (5.9 m/s ²) max.
Sta	ndards Compliance	·UL508C ·EN61800-3, EN61800-5-1 ·ISO13849-1 Cat.3 PLd, IEC61508 SIL2
Pro	tection Design	IP20 open-chassis, NEMA Type 1 enclosure
*1:	Speed control accuracy may	vary slightly depending on installation *5: Varies by drive capacity. Drives smaller than 7.5 kW (CIMR-VA2A0040/

*1: Speed control accuracy may vary slightly depending on installation conditions or motor used.

*2: Momentary average deceleration torque refers to the deceleration torque from 60Hz down to 0 Hz. This may vary depending on the motor.

*3: Disable Stall Prevention during deceleration by setting L3-04 (Stall Prevention Selection during Deceleration) to 0 (disabled) or 3 (stall prevention with braking resistor) when using a Braking Resistor or Braking Resistor Unit. The motor may not stop within the deceleration time if this setting is not changed.

*4: Overload protection may be triggered at lower levels if output frequency is below 6 Hz.


*5: Varies by drive capacity. Drives smaller than 7.5 kW (CIMR-VA2A0040/ CIMR-VA4A0023) require a separate Momentary Power Loss Recovery Unit to continue operating during a momentary power loss of 2 s.

*6: Protection may not be provided under the following conditions as the motor windings are grounded internally during run:
Low resistance to ground from the motor cable or terminal block.

Drive already has a short-circuit when the power is turned on.

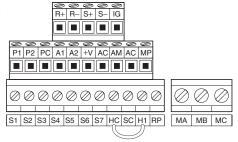
Standard Connection Diagram

Example: 200 V Class

Herminal symbols: I shows main circuit; I shows control circuit.

*1: Remove the jumper between terminals +1 and +2 when installing an optional DC reactor.

*2: The MC on the input side of the main circuit should open when the thermal relay is triggered.


*3: Self-cooled motors do not require separate cooling fan motor wiring.

*4: Connected using sequence (0 V com/sink mode) input signal (S1 to S7) from NPN transistor (default).

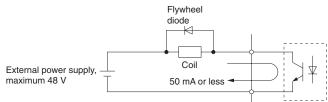
- *5: Sinking mode requires an internal 24 V power supply. Source mode requires an external power supply.
- *6: Monitor outputs work with devices such as analog frequency meters, current meters, voltmeters and watt meters. They cannot be used in a control system requiring feedback.
- *7: When using an external switch to stop the drive as a safety precaution, make sure the jumper creating the short circuit has been removed. Output is interrupted within 1 ms after the safety input is triggered. Make sure safety input wiring does not exceed 30 m.

Note: Input terminal functions may change when Application Presets are used.

Control Circuit and Terminal Layout

Terminal Functions

Main Circuit Terminals


Terminal	Terminal Name	Function (Signal Level)				
R/L1	Main circuit power supply	Connects line power to the drive.				
S/L2		Drives with single-phase 200 V input power use terminals R/L1 and S/L2 only (do not use				
T/L3	input	T/L3).				
U/T1						
V/T2	Drive output	Connects to the motor.				
W/T3						
B1	Braking resistor /	Available for connecting a braking register or braking register unit				
B2	Braking resistor unit	Available for connecting a braking resistor or braking resistor unit.				
+1	DC reactor connection	These terminals are shorted for shipment. Remove the jumper creating the short to install				
+2	DC reactor connection	a DC choke.				
+1	DC power supply input	For connecting a DC power supply.				
—		DC power supply input terminals (+1, -) are not UL/cUL and CE certified.				
Two terminals	Ground	Grounding terminal Grounding resistance for 200 V class: 100 Ω or less Grounding resistance for 400 V class: 10 Ω or less				

Control Circuit Input Terminals

Terminal	No.	Terminal Name	Funct	ion (Signal Level)					
	S1	Multi-function input 1	Closed: Forward run (default) Open: Stop						
	S2	Multi-function input 2	Closed: Reverse run (default) Open: Stop	Photocoupler					
Multi-	S3	Multi-function input 3	External fault, N.O. (default)	24 Vdc, 8 mA					
function	S4	Multi-function input 4	Fault reset (default)	Note: Drive preset to sinking mode. When using source					
digital	S5	Multi-function input 5	Multi-step speed reference 1 (default)	mode, set DIP switch S3 to allow for a 24 Vdc					
input	S6	Multi-function input 6	Multi-step speed reference 2 (default)	(±10%) external power supply.					
input	S7	Multi-function input 7	Jog frequency (default)						
	SC	Multi-function input common (Control common)	Sequence common						
	RP	Multi-function pulse train input	Input frequency: 0.5 to 32 kHz (Duty cycle: 30 to 70%) (High level volt (Low level voltage: 0.0 to 0.8 V) (Input	age: 3.5 to 13.2 V) impedance: 3 k Ω)					
Main	+V	Analog input power supply	+10.5 V (max. allowable current 20 mA	.)					
frequency reference	A1	Main frequency reference	Input voltage 0 to 10 Vdc (20 k Ω) resolution: 1/1000						
input	A2	Multi-function analog input	DIP switch S1 sets the terminal for a volume of termina						
	AC	Frequency reference common	0 V						
Hardwire	HC	Power supply for hardwire baseblock command	+24 Vdc (max. 10 mA allowed)	Note: Remove the jumper when an external safety switch is installed to stop the drive.					
baseblock	H1	Safety Input	Open: Hardwire baseblock Closed: Normal operation	Output is interrupted within 1 ms after the safety input is triggered. Make sure safety input wiring does not exceed 30 m.					
Multi-function	MA	N.O. output	Fault (default)	Digital output					
	MB	N.C. output	Fault (default)	30 Vdc (or less), 10 mA to 1 A					
digital output*1	MC	Digital output common		250 Vac (or less), 10 mA to 1 A					
Multi-function	P1	Photocoupler output 1	During run (default)	Photocoupler output *2					
photocoupler	P2	Photocoupler output 2	Frequency agree (default)	48 Vdc (or less), 50 mA (or less)					
output	PC	Photocoupler output common		48 Vac (or less), 50 mA (or less)					
	MP	Pulse train output	32 kHz (max.)						
Monitor output	AM	Analog monitor output	0 to 10 Vdc (2 mA or less) Resolution: 1/1000						
	AC	Monitor common	0 V						

*1: Refrain from assigning functions to terminals MA and MB that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load).

*2: Connect a flywheel diode as shown in the figure on the right when driving a reactive load such as a relay coil. Make sure the diode rating is greater than the circuit voltage.

Serial Communication Terminals

Туре	No.	Terminal Name	Function (Signal Level)
	R+	Communications input (+)	
MEMORIUO	R–	Communications input (-)	MEMOBUS communication: • Use a RS-485 or RS-422 cable to connect the drive.
MEMOBUS communication	S+	Communications output (+)	• RS-485/422 MEMOBUS communication protocol 115.2 kbps (max.)
communication	S–	Communications output (-)	
	IG	Shielded ground	0 V

Enclosures

Enclosures of standard products vary depending on the model. Refer to the table below.

200 V Class (Single/Three-Phase)

Madal	Model Three-Phase CIMR-VA2A		0001	0002	0004	0006	0008	0010	0012	0018	0020	0030	0040	0056	0069
Model	Single-Phase CIMR-VABA		0001	0002	0003	0006	-	0010	0012	-	0018*	-	-	-	-
Max	. Applicable Motor	Normal Duty	0.2	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5
Cap	acity kW	Heavy Duty	0.1	0.2	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15
Ope	Open-Chassis			ard: IP2	0							IP00 (without top and bottom covers			
Encl	Enclosure Panel [NEMA Type 1]			availal	ole (IP2	0 with N	NEMA 1	kit)				Standa	ırd		

400 V Class (Three-Phase)

Model CIMR-VA4A						0005	0007	0009	0011	0018	0023	0031	0038
Max. Applicable Motor	Normal Duty	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	
Capacity	kW	Heavy Duty	0.2	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15
Open-Chassis				rd: IP20						IP00 (without top and bottom covers)			
Enclosure Panel [NEMA	Enclosure Panel [NEMA Type 1]			available	(IP20 w	ith NEMA	A 1 kit)			Standa	rd		

*: CIMR-VABA0018 does not have a Normal Duty rating

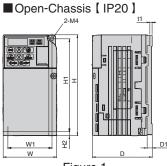


Figure 1

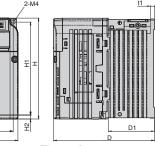


Figure 2

W1

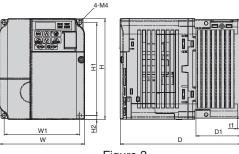
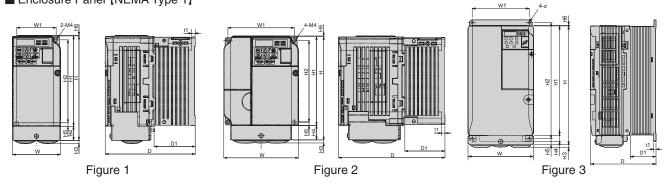
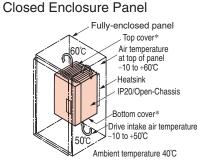



Figure 3

Voltage	Model	Figure				Dim	ensions (mm)				Weight	Cooling			
Class	CIMR- VA	Figure	W	Н	D	W1	H1	H2	D1	t1	Mtg. Holes	(kg)	Cooling			
	2A0001B	1	68	128	76	56	118	5	6.5	3	M4	0.6	0.14			
	2A0002B	1	68	128	76	56	118	5	6.5	3	M4	0.6	Self- cooled			
	2A0004B	2	68	128	108	56	118	5	38.5	5	M4	0.9	coolea			
200 V	2A0006B	2	68	128	128	56	118	5	58.5	5	M4	1.1				
Class (Three-	2A0008B		108	128	129	96	118	5	58	5	M4	1.7				
Phase)	2A0010B		108	128	129	96	118	5	58	5	M4	1.7	Fan			
1 110007	2A0012B	3	108	128	137.5	96	118	5	58	5	M4	1.7	cooled			
	2A0018B		140	128	143	128	118	5	65	5	M4	2.4				
	2A0020B		140	128	143	128	118	5	65	5	M4	2.4				
	BA0001B	1	68	128	76	56	118	5	6.5	3	M4	0.6				
	BA0002B	I	68	128	76	56	118	5	6.5	3	M4	0.6	Self-			
200 V	BA0003B	2	68	128	118	56	118	5	38.5	5	M4	1	cooled			
Class (Single-	BA0006B					108	128	137.5	96	118	5	58	5	M4	1.7	
Phase)	BA0010B	3	108	128	154	96	118	5	58	5	M4	1.8	For			
1 110007	BA0012B	5	140	128	163	128	118	5	65	5	M4	2.4	Fan cooled			
	BA0018B		170	128	180	158	118	5	65	5	M4	3	cooled			
	4A0001B		108	128	81	96	118	5	10	5	M4	1	Self-			
400.14	4A0002B		108	128	99	96	118	5	28	5	M4	1.2	cooled			
400 V	4A0004B		108	128	137.5	96	118	5	58	5	M4	1.7	coolea			
Class (Three-	4A0005B	3	108	128	154	96	118	5	58	5	M4	1.7				
Phase)	4A0007B		108	128	154	96	118	5	58	5	M4		Fan			
	4A0009B		108	128	154	96	118	5	58	5	M4	1.7	cooled			
	4A0011B		140	128	143	128	118	5	65	5	M4	2.4				

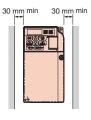
Enclosure Panel [NEMA Type 1]

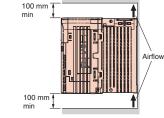

Voltage	Model							Dime	nsions	(mm)						Weight	NEMA 1 Kit	0.1
Class	CIMR-VA	Figure	W1	H2	W	H1	D	t1	H5	D1	н	H4	НЗ	H6	d	(kg)	Code No. (Model)	Cooling
	2A0001B		56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8		Self
	2A0002B	1	56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	100-036-378	cooled
	2A0004B	1	56	118	68	128	108	5	5	38.5	148	20	5	1.5	M4	1.1	(EZZ020564A)	cooled
	2A0006B		56	118	68	128	128	5	5	58.5	148	20	5	1.5	M4	1.3		
	2A0008B		96	118	108	128	129	5	5	58	149	21	5	1.5	M4	1.9	100-036-380	
200 V	2A0010B		96	118	108	128	129	5	5	58	149	21	5	1.5	M4	1.9	(EZZ020564G)	
Class (Three-	2A0012B	2	96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	100-036-381 (EZZ020564C)	Fan
Phase)	2A0018B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	100-036-384	cooled
	2A0020B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	(EZZ020564H)	cooled
	2A0030F		122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8		
	2A0040F	3	122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8	Not required	
	2A0056F	3	160	284	180	270	163	5	13	75	290	15	6	1.5	M5	5.5	(Standard)	
	2A0069F		192	336	220	320	187	5	22	78	350	15	7	1.5	M6	9.2		
	BA0001B		56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	100-036-378	
	BA0002B	1	56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	(EZZ020564A)	
	BA0003B	1	56	118	68	128	118	5	5	38.5	148	20	5	1.5	M4	1.2	100-036-379 (EZZ020564B)	Self cooled
200 V Class	BA0006B		96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	100-036-381 (EZZ020564C)	
(Single- Phase)	BA0010B	2	96	118	108	128	154	5	5	58	149	21	5	1.5	M4	2	100-036-382 (EZZ020564D)	
	BA0012B	2	128	118	140	128	163	5	5	65	149	21	5	5	M4	2.6	100-036-385 (EZZ020564E)	Fan cooled
	BA0018B		158	118	170	128	180	5	5	65	166	38	5	5	M4	3.3	100-036-386 (EZZ020564F)	
	4A0001B		96	118	108	128	81	5	5	10	149	21	5	1.5	M4	1.2	100-036-380	
	4A0002B		96	118	108	128	99	5	5	28	149	21	5	1.5	M4	1.4	(EZZ020564G)	Self
	4A0004B		96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	100-036-381 (EZZ020564C)	cooled
400 V	4A0005B	2	96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9	100-036-383	
400 V Class	4A0007B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9	(EZZ020564J)	
(Three-	4A0009B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9	(EZZUZU304J)	
(Three- Phase)	4A0011B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	100-036-384 (EZZ020564H)	Fan
	4A0018F		122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8		cooled
	4A0023F	3	122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8	Not required	
	4A0031F	3	160	284	180	270	143	5	13	55	290	15	6	1.5	M5	5.2	(Standard)	
	4A0038F		160	284	180	270	163	5	13	75	290	15	6	1.5	M5	5.5		

Note: For the models shown in Figures 1 and 2, the NEMA 1 kit (option) is required. The dimensions in the above table are intended for the IP20/Open Chassis enclosure with the NEMA 1 kit.

The Open Chassis type drive can be installed in a fully-enclosed panel.

The heatsink can be mounted outside the enclosure panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up. Proper installation requires an understanding of the temperature at each point within the enclosure panel as shown below. Be sure to leave enough clearance during installation for ventilation and proper cooling as well as access to wiring for maintenance.


Mounting the External Heatsink



Cooling Design for Fully-

Mounting surface

Ensuring Ventilation

Side Clearance

Top/Bottom Clearance

Note: A separate mounting bracket option is required to install the heatsink outside the enclosure. Refer to the following page.

*: The Enclosure Panel type models (CIMR-VA2A0030 to 0069, CIMR-VA4A0018 to 0038) can be installed with the top and bottom covers removed.

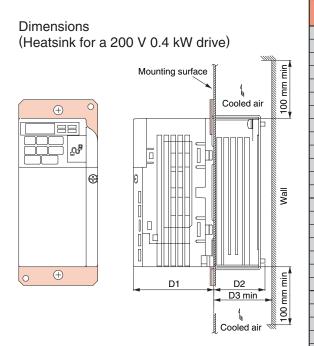
Drive Watts Loss Data

Normal Duty Ratings

Voltage Class	Model N	umber /A2A		0001	0002	0004	0006	0008	0010	0012	0018	0020	0030	0040	0056	0069
				1.0	1.0	3.5	0	8	0.0	12	175	10.0	30	40	50	69
200 V	Rated Outp		A	1.2	1.9		6	-	9.6		17.5	19.6			56	
Class		Heatsink	W	5	7.6	15.8	27.5	44.6	51.7	61.3	89.8	98.7	246.4	266.7	357.9	461.7
(Three-	Heat Loss	Internal	W	8	9.5	13.6	17.2	24	25.8	30.4	44.1	46.3	88.9	112.8	151.8	184.5
Phase)		Total Heat Loss	W	13	17.1	29.4	44.7	68.6	77.5	91.7	133.9	145	335.3	379.5	509.7	646.2
Voltage	Model N	umber		0001	0000	0000	0000		0010	0010						
Class	CIMR-\	CIMR-VABA		0001	0002	0003	0006	—	0010	0012	_	-	_	-	_	_
200 V	Rated Output Current A		А	1.2	1.9	3.3	6	-	9.6	12	-	-	-	-	-	-
Class		Heatsink	W	5	7.6	14.6	30.1	-	51.7	61.3	-	-	-	-	-	-
(Single-	Heat Loss	Internal	W	8.5	9.7	14.4	19.4	-	29.8	37.1	-	-	-	-	-	-
Phase)		Total Heat Loss	W	13.5	17.3	29	49.5	-	81.5	98.4	-	-	-	-	-	-
Voltage	Model N	umber		0004	0000	0004	0005		0007			0044	0040	0000	0004	0000
Class	CIMR-\	/A4A		0001	0002	0004	0005	-	0007	0009	-	0011	0018	0023	0031	0038
400 V	Rated Outp	ut Current	А	1.2	2.1	4.1	5.4	-	6.9	8.8	-	11.1	17.5	23	31	38
Class		Heatsink	W	10	18.5	30.5	44.5	-	58.5	63.7	-	81.7	181.2	213.4	287.5	319.2
(Three-	Heat Loss	Internal	W	9.6	13.9	16.8	21.8	-	28.5	31.4	-	46	80.1	107.7	146.1	155.8
Phase)		Total Heat Loss	W	19.6	32.4	47.3	66.3	-	87	95.1	-	127.7	261.3	321.1	433.6	475

Note: Heat loss data based on carrier frequency of 2 kHz (default).

Heavy Duty Ratings


	-	· · · · · · · · · · · · · · · · · · ·														
Voltage	Model N			0001*1	0002*1	0004*1	0006*1	0008*1	0010*2	0012*2	0018*2	0020*2	0030*2	0040*2	0056*2	0069*2
Class	CIMR-\	/A2A		0001	UUUL	0001	0000	0000	0010	0012	0010	UULU	0000	0010	0000	0000
200 V	Rated Outp		А	0.8	1.6	3	5	6.9	8	11	14	17.5	25	33	47	60
Class		Heatsink	W	4.3	7.9	16.1	27.4	48.7	54.8	70.7	92.6	110.5	231.5	239.5	347.6	437.7
(Three-	Heat Loss	Internal	W	7.3	8.8	11.5	15.9	22.2	23.8	30	38.8	43.3	72.2	81.8	117.6	151.4
Phase)		Total Heat Loss	W	11.6	16.7	27.6	43.3	70.9	78.6	100.7	131.4	153.8	303.7	321.3	465.2	589.1
Voltage	Model Number			0001*1	0002*1	0003*1	0006*1	_	0010*2	0012*2	_	0018*2	_	_	_	
Class	CIMR-VABA			0001**	0002**	0003**	0000	_	0010**	0012**	_	0010**	_	_	_	-
200 V	Rated Outp	ut Current	А	0.8	1.6	3	5	-	8	11	-	17.5	-	-	-	-
Class		Heatsink	W	4.3	7.9	16.1	33.7	-	54.8	70.7	-	110.5	-	-	-	-
(Single-	Heat Loss	Internal	W	7.4	8.9	11.5	16.8	-	25.9	34.1	-	51.4	-	-	-	-
Phase)		Total Heat Loss	W	11.7	16.8	27.6	50.5	-	80.7	104.8	-	161.9	-	-	-	-
Voltage	Model N	umber		0001*2	0002*2	0004*2	0005*2		0007*2	0009*2		0011*2	0018*2	0023*2	0031*2	0038*2
Class	CIMR-\	/A4A		0001**2	0002**	0004**	0005**	-	0007**	0009**	-	0011**	0018**	0023**	0031**	0038**
400 V			А	1.2	1.8	3.4	4.8	-	5.5	7.2	-	9.2	14.8	18	24	31
Class		Heatsink	W	19.2	28.9	42.3	70.7	-	81	84.6	-	107.2	166	207.1	266.9	319.1
(Three-	Heat Loss	Internal	W	11.4	14.9	17.9	26.2	-	30.7	32.9	-	41.5	62.7	78.1	105.9	126.6
Phase)		Total Heat Loss	W	30.6	43.8	60.2	96.9	-	111.7	117.5	-	148.7	228.7	285.2	372.8	445.7
																·

*1: Heat loss data based on carrier frequency of 10 kHz (default).

26 *2: Heat loss data based on carrier frequency of 8 kHz (default).

Attachment for External Heatsink

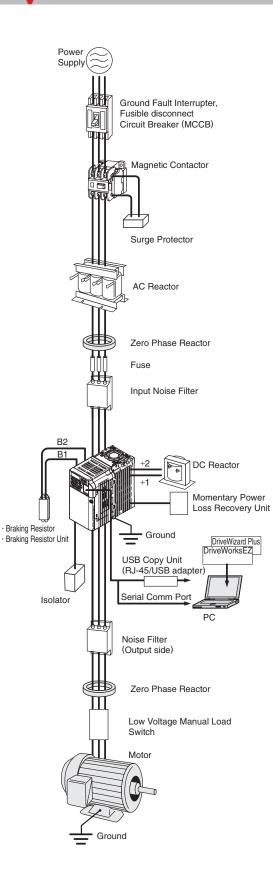
Additional attachments required for installation. Final dimensions are taller than drive height.

Model	Dime	ensions (mm)	Code No.
CIMR-VA	D1	D2	D3	(Model)
2A0001	69.5	12	30	100-034-075 (EZZ020568A)
2A0002	09.5	12	- 30	100-034-075 (EZ2020508A)
2A0004	69.5	42	50	100-034-076 (EZZ020568B)
2A0006	09.5	62	70	100-034-077 (EZZ020568G)
2A0008	71			
2A0010	/1	58	70	100-034-079 (EZZ020568D)
2A0012	79.5			
2A0018	78	65	70	100-034-080 (EZZ020568E)
2A0020	70	05	70	100-034-080 (EZ2020508E)
2A0030	86.6	53.4	60	100-036-300 (EZZ020568H)
2A0040	00.0	55.4	00	100-030-300 (EZ202050811)
2A0056	89.6	73.4	80	100-036-301 (EZZ020568J)
2A0069	110.6	76.4	85	100-036-302 (EZZ020568K)
BA0001	69.5	12	30	100-034-075 (EZZ020568A)
BA0002	09.5	12	30	100-034-075 (EZ2020508A)
BA0003	69.5	42	50	100-034-076 (EZZ020568B)
BA0006	79.5	58	70	100-036-418 (EZZ020568C)
BA0010	96	58	70	100-034-079 (EZZ020568D)
BA0012	98	65	70	100-034-080 (EZZ020568E)
BA0018	115	65	70	100-036-357 (EZZ020568F)
4A0001	71	13.5	30	100-034-078 (EZZ020568L)
4A0002	71	28	40	100-036-418 (EZZ020568C)
4A0004	79.5	58	70	100-030-418 (EZ2020508C)
4A0005				
4A0007	96	58	70	100-034-079 (EZZ020568D)
4A0009				
4A0011	78	65	70	100-034-080 (EZZ020568E)
4A0018	86.6	53.4	60	100-036-300 (EZZ020568H)
4A0023	00.0	55.4	00	100-030-300 (EZZ020508H)
4A0031	89.6	53.4	60	100-036-301 (EZZ020568J)
4A0038	09.0	73.4	80	100 030 301 (EZZ0203003)

Note: The Enclosure Panel type models (CIMR-VA2A0030 to 0069, CIMR-VA4A0018 to 0038) can be installed with the top and bottom covers removed.

Dimension (Heatsink for a 200 V 0.4 kW drive)

DIN rail attachment available for quick mounting and disassembly.


DIN Rail Attachment

The attachment is applicable to models with dimensions of 170 mm (W) and 128 mm (H) max. Not for use with finless-type models (models without a heatsink).

Model CIMR-VA	Width (mm)	Code No.
2A0001		
2A0002	68	EZZ08122A
2A0004	00	EZZUOIZZA
2A0006		
2A0008		
2A0010	108	EZZ08122B
2A0012		
2A0018	140	EZZ08122C
2A0020	140	EZZ001220
BA0001		
BA0002	68	EZZ08122A
BA0003		
BA0006	108	EZZ08122B
BA0010	100	EZZUOTZZD
BA0012	140	EZZ08122C
BA0018	170	EZZ08122D
4A0001		
4A0002		
4A0004	108	EZZ08122B
4A0005	100	ELLUG 122D
4A0007		
4A0009		
4A0011	140	EZZ08122C

Name	Purpose	Model, Manufacturer	Page
Ground Fault Interrupter (GFI)	Always install a GFI on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of short- circuit, and to protect the drive from ground faults that could result in electric shock or fire. Note: When a GFI is installed for the upper power supply system, an MCCB can be used instead of a GFI. Choose a GFI designed to minimize harmonics specifically for AC drives. Use one GFI per drive, each with a current rating of at least 30 mA.	Recommended: NV series by Mitsubishi Electric	p.30
Circuit Breaker	Always install a circuit breaker on the power- supply side to protect the power supply system and to prevent an overload at the occurrence of a short-circuit.	Recommended: NF series by Mitsubishi Electric	p.30
Magnetic Contactor	Interrupts the power supply to the drive. In addition to protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used.	Recommended: SC series by Fuji Electric	p.31
Surge Protector	Absorbs the voltage surge from switching of electro-magnetic contactors and control relays. Install a surge protector to the magnetic contactors and control relays as well as magnetic valves and magnetic braking coil.	DCR2 series RFN series by Nippon Chemi- Con Corporation	p.31
DC Reactor	Used for harmonic current suppression and total improving power factor.	UZDA series	p.32, 33
AC Reactor	Should be used if the power supply capacity is larger than 600 kVA.	UZBA series	p.34, 35
Zero Phase Reactor	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides.	F6045GB F11080GB by Hitachi Metals, Ltd.	p.36
Fuse / Fuse Holder	Protects internal circuitry in the event of component failure. Fuse should be connected to the input terminal of the drive. Note: Refer to the instruction manual for information on UL approval.	CR6L series CMS series by Fuji Electric	p.37
Capacitor-type Noise Filter	Reduces noise from the line that enters into the drive input power system. The noise filter can be used in combination with a zero-phase reactor. Note: Available for drive input only. Do not connect the noise filter to the output terminals.	3XYG 1003 by Okaya Electric Industries	p.37
Input Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LNFD series LNFB series FN series For CE Marking (EMC Directive) compliant models, refer to V1000 Technical Manual.	p.38, 39
Output Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LF series by NEC TOKIN Corporation	p.40
Isolator	Isolates the drive I/O signal, and is effective in reducing inductive noise.	DGP2 series	p.41
Braking Resistor	Used to shorten the deceleration time by dissipat- ing regenerative energy through a resistor. (3% ED)	ERF-150WJ series CF120-B579 series	p.42, 43
Braking Resistor Unit	Used to shorten the deceleration time by dissipat- ing regenerative energy through a resistor. A thermal overload relay is built in. (10% ED)	LKEB series	p.42, 43
24 V Power Supply	Provides power supply for the control circuit and option boards. Note: Parameter settings cannot be changed when the drive is operating solely from this power supply.	PS-V10S PS-V10M	p.44
USB Copy Unit (RJ-45/ USB compatible plug)	 Adapter for connecting the drive to the USB port of a PC. Can copy parameter settings to be later transferred to another drive. 	JVOP-181	p.45

	Name	Purpose	Model, Manufacturer	Page
Support T (DriveWiz	ōols zard) Cable	Connects the drive to a PC for use with DriveWizard.	WV103	p.45
Remote D	Digital Operator	Allows for remote operation. Includes a Copy function for saving drive settings.	LCD: JVOP-180 LED: JVOP-182	p.46
Operator	Extension Cable	Cable for connecting the remote digital operator.	WV001: 1 m WV003: 3 m	
	MECHATROLINK-II		SI-T3/V	
	MECHATROLINK-III		Available soon	1
Communi-	CC-Link		SI-C3/V	1
cation Interface	DeviceNet	Allows control of the drive via a fieldbus network.	SI-N3/V	p.47
Unit	CompoNet		SI-M3/V	1
	PROFIBUS-DP		SI-P3/V	1
	CANopen		SI-S3/V	1
Momenta Recovery	ry Power Loss Unit	Ensures continued drive operation for a power loss of up to 2 s.	P0010 Type (200 V class) P0020 Type (400 V class)	p.48
Frequency I	Meter, Current Meter		DCF-6A	
Frequenc Potention	y setting neter (2 kΩ)		RH000739	
	Meter Adjusting eter (20 kΩ)	Allows the user to set and monitor the frequency,	RH000850	p.48
	ial for Frequency otentiometer	current, and voltage using an external device.	CM-3S	
Output Vo	oltage Meter		SCF-12NH	
Potential	Transformer		UPN-B	p.49
NEMA 1 H	Kit	Turns an IP20 open-chassis design into a NEMA 1 compliant enclosure panel.	_	p.25
Attachme Heatsink	nt for External	Mechanical kit to install the drive with the heatsink out of the cabinet. Note: Current derating must be considered in some instances.	_	p.27
DIN Rail /	Attachment	Allows mounting the drive on a DIN rail. Installs to the rear of the drive unit.	_	
Low Volta Switch	ige Manual Load	Prevents shock from the voltage created on the terminals board from a coasting synchronous motor.	Recommended: AICUT, LB series by AICHI ELECTRIC WORKS CO.,Ltd.	_

Note: Contact the manufacturer in question for availability and specifications of non-Yaskawa products.

Ground Fault Interrupter, Circuit Breaker

Base device selection on motor capacity.

Circuit Breaker [Mitsubishi Electric]

Three-Phase 200 V Class

			Ground Faul	t Interrupter					Circuit E	Breaker		
Motor	With	out Read	ctor*1	Wi	th Reacto	or*2	With	out Read	ctor*1	Wit	th Reacte	or*2
Capacity (kW)	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3
0.1	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.2	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.4	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.75	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5
1.5	NV32-SV	15	10/10	NV32-SV	10	10/10	NF32-SV	15	7.5/7.5	NF32-SV	10	7.5/7.5
2.2	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5
3.7	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
5.5	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15
7.5	NV125-SV	60	50/50	NV63-SV	50	15/15	NF125-SV	60	50/50	NF63-SV	50	15/15
11	NV125-SV	75	50/50	NV125-SV	75	50/50	NF125-SV	75	50/50	NF125-SV	75	50/50
15	NV250-SV	125	85/85	NV125-SV	100	50/50	NF250-SV	125	85/85	NF125-SV	100	50/50
18.5	NV250-SV	150	85/85	NV250-SV	125	85/85	NF250-SV	150	85/85	NF250-SV	125	85/85

Single-Phase 200 V Class

			Ground Fau	It Interrupter					Circuit E	Breaker		
Motor	With	out Read	ctor*1	Wit	th Reacto	or*2	With	out Read	ctor*1	Wi	th Reacto	or*2
Capacity (kW)	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3
0.1	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.2	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.4	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5
0.75	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5
1.5	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
2.2	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
3.7	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15

Three-Phase 400 V Class

			Ground Faul	It Interrupter					Circuit E	Breaker		
Motor	With	out Read	tor*1	Wit	th Reacto	or*2	With	out Read	ctor*1	Wi	th Reacto	or*2
Capacity (kW)	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics ^{*3}
0.2	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.4	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.75	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	5	2.5/2.5	NF32-SV	5	2.5/2.5
1.5	NV32-SV	10	5/5	NV32-SV	10	5/5	NF32-SV	10	2.5/2.5	NF32-SV	10	2.5/2.5
2.2	NV32-SV	15	5/5	NV32-SV	10	5/5	NF32-SV	15	2.5/2.5	NF32-SV	10	2.5/2.5
3.7	NV32-SV	20	5/5	NV32-SV	15	5/5	NF32-SV	20	2.5/2.5	NF32-SV	15	2.5/2.5
5.5	NV32-SV	30	5/5	NV32-SV	20	5/5	NF32-SV	30	2.5/2.5	NF32-SV	20	2.5/2.5
7.5	NV32-SV	30	5/5	NV32-SV	30	5/5	NF32-SV	30	2.5/2.5	NF32-SV	30	2.5/2.5
11	NV63-SV	50	7.5/7.5	NV63-SV	40	7.5/7.5	NF63-SV	50	7.5/7.5	NF63-SV	40	7.5/7.5
15	NV125-SV	60	25/25	NV63-SV	50	7.5/7.5	NF125-SV	60	25/25	NF63-SV	50	7.5/7.5
18.5	NV125-SV	75	25/25	NV125-SV	60	25/25	NF125-SV	75	25/25	NF125-SV	60	25/25

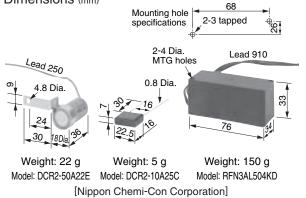
*1: The AC or DC reactor is not connected to the drive.

*2: The AC or DC reactor is connected to the drive.

*3: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity

Magnetic Contactor

Base device selection on motor capacity.

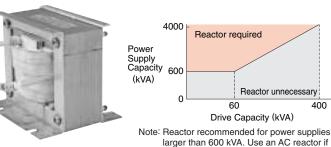

Magnetic Contactor [Fuji Electric]

	Thr	ee-Phase	200 V Cla	ISS	Sing	gle-Phase	200 V Cla	ISS	Thr	ee-Phase	400 V Cla	SS
Motor	Without F	leactor*1	With Re	actor*2	Without R	leactor*1	With Re	actor*2	Without R	leactor*1	With Re	actor*2
Capacity (kW)	Model	Rated Current (A)										
0.1	SC-03	11	SC-03	11	SC-03	11	SC-03	11	-	-	-	_
0.2	SC-03	11	SC-03	11	SC-03	11	SC-03	11	SC-03	7	SC-03	7
0.4	SC-03	11	SC-03	11	SC-03	11	SC-03	11	SC-03	7	SC-03	7
0.75	SC-05	13	SC-03	11	SC-4-0	18	SC-4-0	18	SC-03	7	SC-03	7
1.5	SC-4-0	18	SC-05	13	SC-N2	35	SC-N1	26	SC-05	9	SC-05	9
2.2	SC-N1	26	SC-4-0	18	SC-N2	35	SC-N2	35	SC-4-0	13	SC-4-0	13
3.7	SC-N2	35	SC-N1	26	SC-N2S	50	SC-N2S	50	SC-4-1	17	SC-4-1	17
5.5	SC-N2S	50	SC-N2	35	-	-	-	-	SC-N2	32	SC-N1	25
7.5	SC-N3	65	SC-N2S	50	-	-	-	_	SC-N2S	48	SC-N2	32
11	SC-N4	80	SC-N4	80	-	-	-	-	SC-N2S	48	SC-N2S	48
15	SC-N5	93	SC-N4	80	-	-	-	-	SC-N3	65	SC-N2S	48
18.5	SC-N5	93	SC-N5	93	-	-	_	_	SC-N3	65	SC-N3	65

*1: The AC or DC reactor is not connected to the drive. *2: The AC or DC reactor is connected to the drive.

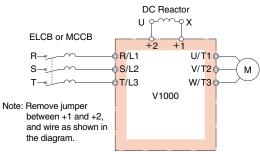
Surge Protector

Dimensions (mm)

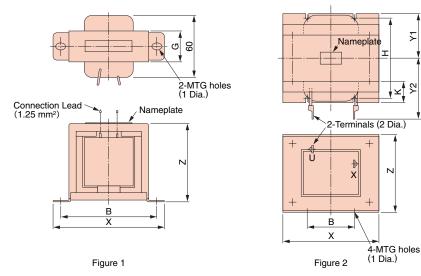


Product Line

Periph	eral De	Surge Protector	Model	Specifications	Code No.
200 V to 230 V	Ŭ	Capacity Coil than relay)	DCR2-50A22E	220 Vac 0.5 μF+200 Ω	C002417
200 V to 240 V	Control	MY2, MY3 [Omron Corporation] MM2, MM4 [Omron Corporation] HH22, HH23 [Fuji Electric]	DCR2-10A25C	250 Vac 0.1 μF+100 Ω	C002482
	38	30 to 480 V	RFN3AL504KD	1000 Vdc 0.5 $\mu\mathrm{F}\text{+}\mathrm{220}~\Omega$	C002630


DC Reactor (UZDA-B for DC circuit)

Base device selection on motor capacity.



larger than 600 kVA. Use an AC reactor i power supply is 0.2 kW or smaller.

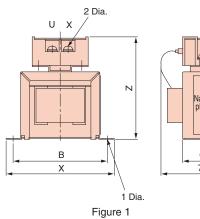
Connection Diagram

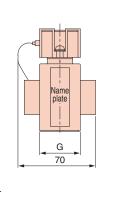
Dimensions (mm)

Three-Phase 200 V Class Note: Contact Yaskawa directly for information on 200 V class single-phase drives. Use an AC reactor for motor capacities up to 0.2 kW.

	Current	Inductance	Code No.	Figure				7	(m	nsions m)	1			0.51	Weight	Watt Loss	Wire Gauge*
(kW)	(A)	(mH)			Х	Y2	Y1	Z	В	H	K	G	1 Dia.	2 Dia.	(kg)	(W)	(mm ²)
0.4 0.75	5.4	8	X010048	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
1.5 2.2 3.7	18	3	X010049		86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
5.5 7.5	36	1	X010050	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
11 15	72	0.5	X010051		105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
18.5	90	0.4	X010176]	133	120	52.5	117	86	80	25	-	M6	M8	6.5	45	30

Three-Phase 400 V Class


Motor Capacity	Current	Inductance	Code No.	Figure					,	nsions m)					Weight	Watt Loss	Wire Gauge*
(kW)	(A)	(mH)		Ŭ	Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)	(mm ²)
0.4 0.75	3.2	28	X010052	4	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
1.5 2.2	5.7	11	X010053		90	-	-	60	80	-	-	32	M4	-	1	11	2
3.7	12	6.3	X010054		86	80	36	76	60	55	18	_	M4	M5	2	16	2
5.5 7.5	23	3.6	X010055	2	105	90	46	93	64	80	26	_	M6	M5	3.2	27	5.5
11 15	33	1.9	X010056		105	95	51	93	64	90	26	_	M6	M6	4	26	8
18.5	47	1.3	X010177	1	115	125	57.5	100	72	90	25	_	M6	M6	6	42	14


*: Cable: IV, 75°C, ambient temperature 45°C, 3 lines max.

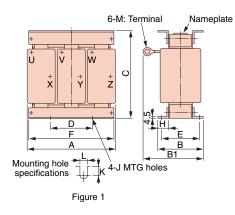
Terminal Type

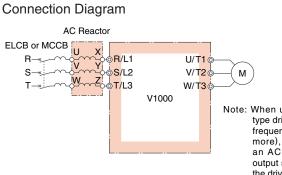
Dimensions (mm)

200 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Z	В	H	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4 0.75	5.4	8	300-027-130	1	85	_	_	81	74	-	-	32	M4	M4	0.8	8
1.5 2.2	18	3	300-027-131		86	84	36	101	60	55	18	_	M4	M4	2	18
3.7																
5.5	36	1	300-027-132	2	105	94	46	129	64	80	26	_	M6	M4	3.2	22
7.5	00	I	000 027 102		105	54	40	125	04	00	20		IVIO		0.2	~~~
11	72	0.5	300-027-133		105	104	56	105	64	100	26	_	MG	MG	4.9	29
15	12	0.5	300-027-133		105	124	90	135	64	100	20		M6	M6	4.9	29
18.5	90	0.4	300-027-139		133	147.5	52.5	160	86	80	25	-	M6	M6	6.5	44

400 V Class


Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4	3.2	28	300-027-134		85	_	_	81	74	_	_	32	M4	M4	0.8	9
0.75	3.2	20	300-027-134	- 1	60			01	74			32	IVI4	1014	0.8	9
1.5	5.7	11	300-027-135		90	_	_	88	80	_	_	32	M4	M4	4	11
2.2	5.7	11	300-027-135		90			00	80			32	1014	1014	1	
3.7	12	6.3	300-027-136		86	84	36	101	60	55	18	-	M4	M4	2	16
5.5	23	3.6	300-027-137		105	104	46	118	64	80	26	_	M6	M4	3.2	27
7.5	23	5.0	300-027-137	2	105	104	40	110	04	80	20		IVIO	1014	5.2	21
11	33	1.9	300-027-138	2	105	109	51	129	64	90	26	_	M6	M4	4	26
15	- 33	1.9	300-027-130]	105	109	51	129	04	30	20		1010	1014	4	20
18.5	47	1.3	300-027-140		115	142.5	57.5	136	72	90	25	-	M6	M5	6	42


AC Reactor (UZBA-B for Input 50/60 Hz)

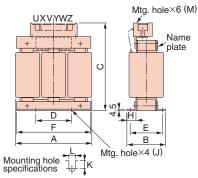
Base device selection on motor capacity.

Dimensions (mm)

Note: When using low noise type drives (high-carrier frequency of 2.5 kHz or more), do not connect an AC reactor to the output side (U, V, W) of the drive.

Three-Phase 200 V Class	Note: For the 200 V class single-phase input series, contact us for inquiry.
-------------------------	--

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	•	D	D1			(m	nsions im) F					м	Weight (kg)	Watt Loss (W)
((()))	(ר)	(11117)			A	В	B1	C	D	E	F	Н	J	K	L	IVI	(ky)	(• •)
3.7	20	0.53	X002491			88	114			70				11.5		M5	3	35
5.5	30	0.35	X002492]	130	00	119	105	50	70	130	22	M6	9	7	CIVI	3	45
7.5	40	0.265	X002493]		98	139	1		80	1			11.5		M6	4	50
11	60	0.18	X002495] '	160	105	147.5	130	75	85	160	25	M6	10	7	M6	6	65
15	80	0.13	X002497]	100	100	155	150	75	80	180	25	M6	10	7	M8	8	75
18.5	90	0.12	X002498]	180	100	150	150	75	00	180	20		10	/	IVIO	°	90


Three-Phase 400 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						Dimer (m	nsions m)						Weight	Watt Loss
(kW)	(A)	(mH)			Α	В	B1	С	D	Е	F	Н	J	K	L	М	(kg)	(W)
7.5	20	1.06	X002502		160	90	115	130	75	70	160	25	M6	10	7	M5	5	50
11	30	0.7	X002503	4	100	105	132.5	130	75	85	100	25	IVIO	10	/	CIVI	6	65
15	40	0.53	X002504		180	100	140	150	75	80	180	25	M6	10	7	M6	8	90
18.5	50	0.42	X002505		100		145	150	75	00	100	20	IVIO	10	'		0	90

Terminal Type

Dimensions (mm)

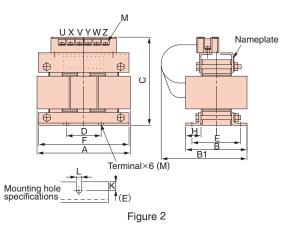
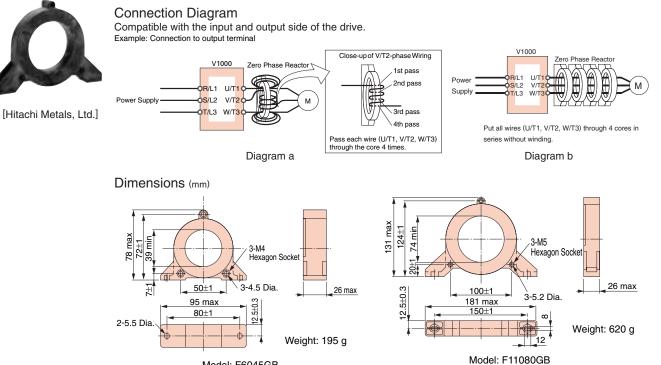


Figure 1

200 V Class

Motor Capacity	Current	Code No.	Figure	Dimensions (mm)											Weight	Watt Loss							
(kW)	(A)	(mH)			А	В	B1	С	D	Е	F	Н	J	К	L	M	(kg)	(W)					
0.1	2	7	X002764	1	120 71 130 88			120	40		105 20	20	M6										
0.2	2	7	7002764			71								10.5	7		2.5	15					
0.4	2.5	4.2	X002553									20		10.5		M4	2.5	15					
0.75	5	2.1	X002554													1014							
1.5	10	1.1	X002489					130	50		130	130 22		11.5			3	25					
2.2	15	0.71	X002490					130	50	70	130	22		11.5				30					
3.7	20	0.53	300-027-120		135	88	140	130	50	50 70	130	22	_	—		M4	3	35					
5.5	30	0.35	300-027-121			100	100 00	135	135	135	100 00	100 00	150	130	50	70	130	22		9		1014	3
7.5	40	0.265	300-027-122	2	135	98	160	140	50	80	130	22	M6	MG 11.5	7	M5	4	50					
11	60	0.18	300-027-123		165	105	185	170	75	85	160	25		10	/	M6	6	65					
15	80	0.13	300-027-124]	185	100	180	195	75	80	0 180	0 25		10		M6	8	75					
18.5	90	0.12	300-027-125		100	100	100	190	75	00	100	20					0	90					

400 V Class


Motor Capacity	Figure	igure Dimensions (mm)										Weight	Watt Loss					
(kW)	(A)	(mH)			Α	В	B1	С	D	E	F	Н	J	K	L	M	(kg)	(W)
0.2	1.3	18	X002561	1		120 71		120 40		40 50	50 105	20						15
0.4	1.3	18	X002561		120				40					10.5			2.5	
0.75	2.5	8.4	X002562															
1.5	5	4.2	X002563		130 ⁸⁸ 98			130	50	70	130	22	M6	9	7	M4	3	25
2.2	7.5	3.6	X002564			88								3				25
3.7	10	2.2	X002500			130					130			11.5				40
5.5	15	1.42	X002501			3			80				11.5			4	50	
7.5	20	1.06	300-027-126		165	90	160	455		70	160					M4	5	50
11	30	0.7	300-027-127	0	105	105	175	155	155 75	85		25	M6 10	10	7	1014	6	65
15	40	0.53	300-027-128	2	185 1	100	170	185		80	180			10	1	M5	0	90
18.5	50	0.42	300-027-129					185								CIVID	3 4 5	90

Zero Phase Reactor

Zero-phase reactor should match wire gauge.*

- *: Current values for wire gauges may vary based on electrical codes. The table below lists selections based on Japanese electrical standards and Yaskawa's ND
 - rating. Contact Yaskawa for questions regarding UL.

Finemet Zero-Phase Reactor to Reduce Radio Noise Note: Finemet is a registered trademark of Hitachi Metals, Ltd.

Model: F6045GB

Three-Phase 200 V Class

V1000		Zero Phase Reactor							
Motor Capacity (kW)	Recommended Gauge (mm ²)	Model	Code No.	Qty.	Diagram				
0.1	2	F6045GB	FIL001098	1	а				
0.2	2	F6045GB	FIL001098	1	а				
0.4	2	F6045GB	FIL001098	1	а				
0.75	2	F6045GB	FIL001098	1	а				
1.5	2	F6045GB	FIL001098	1	а				
2.2	2	F6045GB	FIL001098	1	а				
3.7	3.5	F6045GB	FIL001098	1	а				
5.5	5.5	F6045GB	FIL001098	1	а				
7.5	8	F11080GB	FIL001097	1	а				
11	14	F6045GB	FIL001098	4	b				
15	22	F6045GB	FIL001098	4	b				
18.5	30	F6045GB	FIL001098	4	b				

Three-Phase 400 V Class

V1000		Zero Phase Reactor							
Motor Capacity (kW)	Recommended Gauge (mm ²)	Model	Code No.	Qty.	Diagram				
0.2	2	F6045GB	FIL001098	1	а				
0.4	2	F6045GB	FIL001098	1	а				
0.75	2	F6045GB	FIL001098	1	а				
1.5	2	F6045GB	FIL001098	1	а				
2.2	2	F6045GB	FIL001098	1	а				
3.0	2	F6045GB	FIL001098	1	а				
3.7	2	F6045GB	FIL001098	1	а				
5.5	2	F6045GB	FIL001098	1	а				
7.5	5.5	F6045GB	FIL001098	1	а				
11	5.5	F6045GB	FIL001098	1	а				
15	14	F6045GB	FIL001098	4	b				
18.5	14	F6045GB	FIL001098	4	b				

Single-Phase 200 V Class

V1000		Zero Phase Reactor							
Motor Capacity (kW)	Recommended Gauge (mm ²)	Model	Code No.	Qty.	Diagram				
0.1	2	F6045GB	FIL001098	1	а				
0.2	2	F6045GB	FIL001098	1	а				
0.4	2	F6045GB	FIL001098	1	а				
0.75	2	F6045GB	FIL001098	1	а				
1.5	2	F6045GB	FIL001098	1	а				
2.2	3.5	F6045GB	FIL001098	1	а				
3.7	8	F11080GB	FIL001097	1	а				

Fuse/Fuse Holder

Install a fuse to the drive input terminals to prevent damage in case a fault occurs.

Refer to the instruction manual for information on UL-approved components.

[Fuji Electric]

Three-Phase 200 V Class

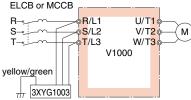
Model		AC	Power Supply /	DC F	Power Su	upply					
CIMR-VA2A		Fu	se		Fuse Holder						
	Model	Code No.	Rated Short-Circuit Breaking Current (kA)	Qty.*	Model	Code No.	Qty.*	Figure			
0001	CR6L-20/UL	FU002087		3							
0002	CR6L-20/UL	FU002087		3							
0004	CR6L-20/UL	FU002087		3							
0006	CR6L-30/UL	FU002088		3	CMS-4	FU002091	3	1			
0008	CR6L-50/UL	FU000935		3							
0010	CR6L-50/UL	FU000935		3							
0012	CR6L-50/UL	FU000935	100	3							
0018	CR6L-75/UL	FU002089		3							
0020	CR6L-75/UL	FU002089		3							
0030	CR6L-100/UL	FU000927		3	CMS-5	FU002092	3	2			
0040	CR6L-150/UL	FU000928		3							
0056	CR6L-150/UL	FU000928		3							
0069	CR6L-200/UL	FU000929		3		Note					

* : Multiple fuses are needed when using an AC power supply. DC power requires only two fuses. Note: Manufacturer does not recommend a specific fuse holder for this fuse. Contact the manufacturer for information on fuse dimensions.

Single-Phase 200 V Class

Model		AC Power Supply / DC Power Supply										
CIMR-		Fu	se			Fuse Hol	der					
VABA	Model	Code No.	Rated Short-Circuit	0	Madal	Cada Na	0	Lieure				
	Model	Code No.	Breaking Current (kA)	Qty.	Model	Code No.	Qty.	Figure				
0001	CR6L-20/UL	FU002087		2								
0002	CR6L-30/UL	FU002088		2	CMS-4	FU002091	2	1				
0003	CR6L-50/UL	FU000935		2								
0006	CR6L-75/UL	FU002089	100	2								
0010	CR6L-100/UL	FU000927		2	CMS-5	EU002002	2	4				
0012	CR6L-100/UL	FU000927		2	01013-5	FU002092	2					
0018	CR6L-150/UL	FU000928		2								

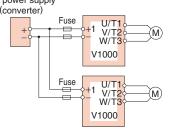
Capacitor-type Noise Filter


Capacitor-type noise filter exclusively designed for drive input. The noise filter can be used in combination with a zero-phase reactor. For both 200 V and 400 V classes. Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals.

[Okaya Electric Industries]

Model	Code No.
3XYG 1003	C002889

Connection	Diagram

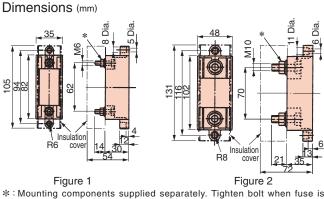

Specifications

Rated Voltage	Capacitance (3 devices each)	Operating Temperature Range (°C)
440 V	X (Δ connection): 0.1 μ F±20% Y (\wedge connection): 0.003 μ F±20%	-40 to +85

Note: For use with 460 V and 480 V units, contact Yaskawa directly.

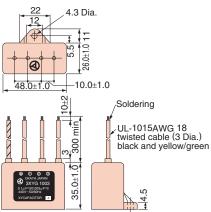
Connection Diagram

DC Input Power Supply (example shows two V1000 drives connected in parallel.) For use with an AC power supply see the connection diagram on page 22. DC power supply



Note: When connecting multiple drives together, make sure that each drive has its own fuse. If any one fuse blows, all fuses should be replaced.

Three-Phase 400 V Class


Model		AC	Power Supply /	DC F	Power Su	upply		
CIMR-VA4A		Fu	se		Fuse Hol	der		
	Model Code No Ra		Rated Short-Circuit Breaking Current (kA)	()†\/ ∻		Code No.	Qty.*	Figure
0001	CR6L-20/UL	FU002087		3				
0002	CR6L-20/UL	FU002087		3				
0004	CR6L-50/UL	FU000935		3				
0005	CR6L-50/UL	FU000935		3	CMS-4	FU002091	3	4
0007	CR6L-50/UL	FU000935		3	01013-4			1
0009	CR6L-50/UL	FU000935	100	3				
0011	CR6L-50/UL	FU000935		3				
0018	CR6L-50/UL	FU000935		3				
0023	CR6L-75/UL	FU002089		3				
0031	CR6L-100/UL	FU000927]	3	CMS-5	FU002092	3	2
0038	CR6L-150/UL	FU000928		3				

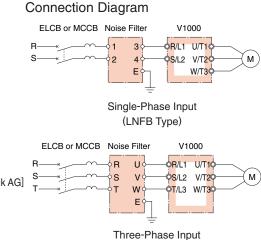
* : Multiple fuses are needed when using an AC power supply. DC power requires only two fuses.

*: Mounting components supplied separately. Tighten bolt when fuse is installed.

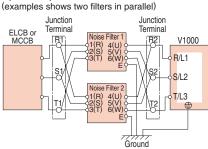
Dimensions (mm)

Input Noise Filter

Base device selection on motor capacity.


Noise Filter without Case

Noise Filter [Schaffner Electronik AG]


Noise Filter with Case

Note: Contact Yaskawa for CE compliant models (EMC directive).

(LNFD Type, FN Type)

Connecting Noise Filters in Parallel to the Input or Output Side

Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals.

Noise filters and grounding wire should be as heavy and as short as possible.

Note: Do not connect the input noise filter to the drive output terminals (U, V, W). Connect in parallel when using two filters. Only a single noise filter is required if the filter is made by Schaffner Electronik AG.

Three-Phase 200 V Class

Motor	Noise	Filter without	Case		Nois	se Filter with Ca	ase		Noise Filter b	y Schaffner Ele	ectronil	(AG
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.1	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	-	-	-
0.2	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	_	—	-	-
0.4	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	-	-	-
0.75	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	_	-	-	-
1.5	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	—	-	-
2.2	LNFD-2153DY	FIL000133	1	15	LNFD-2153HY	FIL000141	1	15	_	—	-	-
3.7	LNFD-2303DY	FIL000135	1	30	LNFD-2303HY	FIL000143	1	30	_	-	-	-
5.5	LNFD-2203DY	FIL000134	2	40	LNFD-2203HY	FIL000142	2	40	FN258L-42-07	FIL001065	1	42
7.5	LNFD-2303DY	FIL000135	2	60	LNFD-2303HY	FIL000143	2	60	FN258L-55-07	FIL001066	1	55
11	LNFD-2303DY	FIL000135	3	90	LNFD-2303HY	FIL000143	3	90	FN258L-75-34	FIL001067	1	75
15	LNFD-2303DY	FIL000135	3	90	LNFD-2303HY	FIL000143	3	90	FN258L-100-35	FIL001068	1	100
18.5	LNFD-2303DY	FIL000135	4	120	LNFD-2303HY	FIL000143	4	120	FN258L-100-35	FIL001068	1	100

Single-Phase 200 V Class

Motor	Noise	Filter without	Case		Nois	se Filter with Ca	ase	
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.1	LNFB-2102DY	FIL000128	1	10	LNFB-2102HY	FIL000136	1	10
0.2	LNFB-2102DY	FIL000128	1	10	LNFB-2102HY	FIL000136	1	10
0.4	LNFB-2152DY	FIL000129	1	15	LNFB-2152HY	FIL000137	1	15
0.75	LNFB-2202DY	FIL000130	1	20	LNFB-2202HY	FIL000138	1	20
1.5	LNFB-2302DY	FIL000131	1	30	LNFB-2302HY	FIL000139	1	30
2.2	LNFB-2202DY	FIL000130	2	40	LNFB-2202HY	FIL000138	2	40
3.7	LNFB-2302DY	FIL000131	2	60	LNFB-2302HY	FIL000139	2	60

Three-Phase 400 V Class

Motor	Noise	Filter without	Case		Nois	se Filter with Ca	ase		Noise Filter by Schaffner Electronik AG			
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.2	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5	-	-	-	-
0.4	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5	_	_	-	-
0.75	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5	_	_	-	-
1.5	LNFD-4103DY	FIL000145	1	10	LNFD-4103HY	FIL000150	1	10	-	-	-	-
2.2	LNFD-4103DY	FIL000145	1	10	LNFD-4103HY	FIL000150	1	10	-	-	-	-
3.7	LNFD-4153DY	FIL000146	1	15	LNFD-4153HY	FIL000151	1	15	-	-	-	-
5.5	LNFD-4203DY	FIL000147	1	20	LNFD-4203HY	FIL000152	1	20	-	-	-	-
7.5	LNFD-4303DY	FIL000148	1	30	LNFD-4303HY	FIL000153	1	30	-	-	-	-
11	LNFD-4203DY	FIL000147	2	40	LNFD-4203HY	FIL000152	2	40	FN258L-42-07	FIL001065	1	42
15	LNFD-4303DY	FIL000148	2	60	LNFD-4303HY	FIL000153	2	60	FN258L-55-07	FIL001066	1	55
18.5	LNFD-4303DY	FIL000148	2	60	LNFD-4303HY	FIL000153	2	60	FN258L-55-07	FIL001066	1	55

Dimensions (mm) Without Case

Figure 1 (Single-Phase)

Figure 2 (Three-Phase)

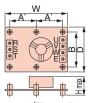
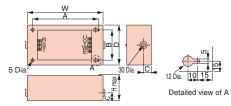
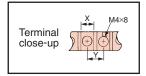
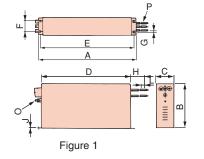



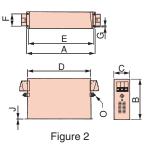
Figure 3 (Three-Phase)


Terminal close-up	
----------------------	--

Model	Code No.	Figure		Din	nensio	ons (m	nm)		Tern	ninal	Mounting	Weight
woder	Code No.	Figure	W	D	Н	Α	A'	В	Х	Y	Screw	(kg)
LNFD-2103DY	FIL000132	2	120	80	55	108	-	68			M4×4,20mm	0.2
LNFD-2153DY	FIL000133	2	120	80	55	108	-	68	9	11	M4×4,20mm	0.2
LNFD-2203DY	FIL000134	2	170	90	70	158	-	78			M4×4,20mm	0.4
LNFD-2303DY	FIL000135	3	170	110	70	-	79	98	10	13	M4×6,20mm	0.5
LNFB-2102DY	FIL000128	1	120	80	50	108	-	68			M4×4,20mm	0.1
LNFB-2152DY	FIL000129	1	120	80	50	108	-	68	9	11	M4×4,20mm	0.2
LNFB-2202DY	FIL000130	1	120	80	50	108	-	68			M4×4,20mm	0.2
LNFB-2302DY	FIL000131	1	130	90	65	118	-	78	10	13	M4×4,20mm	0.3
LNFD-4053DY	FIL000144	3	170	130	75	-	79	118			M4×6,30mm	0.3
LNFD-4103DY	FIL000145	3	170	130	95	-	79	118	9	11	M4×6,30mm	0.4
LNFD-4153DY	FIL000146	3	170	130	95	-	79	118	9		M4×6,30mm	0.4
LNFD-4203DY	FIL000147	3	200	145	100	-	94	133			M4×4,30mm	0.5
LNFD-4303DY	FIL000148	3	200	145	100	-	94	133	10	13	M4×4,30mm	0.6

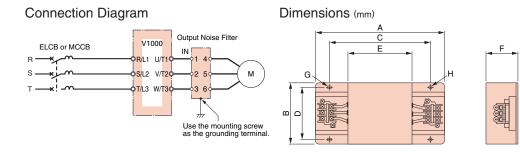
With Case




Note: The figure shows an example of three-phase input.

Model	Code No.		Din	nensio	ons (m	nm)		Tern	ninal	Mounting	Weight
woder	Code No.	W	D	Н	Α	В	С	Х	Y	Screw	(kg)
LNFD-2103HY	FIL000140	185	95	85	155	65	33			M4×4,10mm	0.9
LNFD-2153HY	FIL000141	185	95	85	155	65	33	9	11	M4×4,10mm	0.9
LNFD-2203HY	FIL000142	240	125	100	210	95	33			M4×4,10mm	1.5
LNFD-2303HY	FIL000143	240	125	100	210	95	33	10	13	M4×4,10mm	1.6
LNFB-2102HY	FIL000136	185	95	85	155	65	33			M4×4,10mm	0.8
LNFB-2152HY	FIL000137	185	95	85	155	65	33	9	11	M4×4,10mm	0.8
LNFB-2202HY	FIL000138	185	95	85	155	65	33			M4×4,10mm	0.9
LNFB-2302HY	FIL000139	200	105	95	170	75	33	10	13	M4×4,10mm	1.1
LNFD-4053HY	FIL000149	235	140	120	205	110	43			M4×4,10mm	1.6
LNFD-4103HY	FIL000150	235	140	120	205	110	43	9	11	M4×4,10mm	1.7
LNFD-4153HY	FIL000151	235	140	120	205	110	43	9	11	M4×4,10mm	1.7
LNFD-4203HY	FIL000152	270	155	125	240	125	43			M4×4,10mm	2.2
LNFD-4303HY	FIL000153	270	155	125	240	125	43	10	13	M4×4,10mm	2.2

Manufactured by Schaffner Electronik AG



Model	Figure				D	imensior	ns (mm)						Wire Gauge	Weight
woder	Figure	А	В	С	D	E	F	G	Н	J	L	0	Р	(kg)
FN258L-42-07	1	329	185±1	70	300	314	45	6.5	500	1.5	12	M6	AWG8	2.8
FN258L-55-07	1	329	185±1	80	300	314	55	6.5	500	1.5	12	M6	AWG6	3.1
FN258L-75-34	2	329	220	80	300	314	55	6.5	-	1.5	-	M6	-	4.0
FN258L-100-35	2	379±1.5	220	90±0.8	350±1.2	364	65	6.5	-	1.5	-	M10	-	5.5

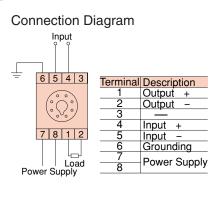
Note: For CE Marking (EMC Directive) compliant models, contact us for inquiry.

Output Noise Filter

Base device selection on motor capacity.

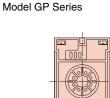
Three/Single-Phase 200 V Class

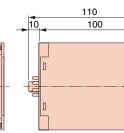
[NEC TOKIN Corporation]

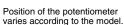

Motor Capacity	Model	Code No.	Qty.	Rated Current					nsions 1m)				Terminal	Weight
(kW)				(A)	А	В	С	D	E	F	G	Н		(kg)
0.1	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	$\phi 4.5$	TE-K5.5M4	0.5
0.2	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	ϕ 4.5	TE-K5.5M4	0.5
0.4	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	ϕ 4.5	TE-K5.5M4	0.5
0.75	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	$\phi 4.5$	TE-K5.5M4	0.5
1.5	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	$\phi 4.5$	TE-K5.5M4	0.5
2.2	LF-320KA	FIL000069	1	20	140	100	100	90	70	45	7×¢4.5	$\phi 4.5$	TE-K5.5M4	0.6
3.7	LF-320KA	FIL000069	1	20	140	100	100	90	70	45	7×¢4.5	$\phi 4.5$	TE-K5.5M4	0.6
5.5	LF-350KA	FIL000070	1	50	260	180	180	160	120	65	7×¢4.5	<i>ф</i> 4.5	TE-K22M6	2
7.5	LF-350KA	FIL000070	1	50	260	180	180	160	120	65	7×¢4.5	$\phi 4.5$	TE-K22M6	2
11	LF-350KA	FIL000070	2	100	260	180	180	160	120	65	7×ø4.5	<i>ф</i> 4.5	TE-K22M6	2
15	LF-350KA	FIL000070	2	100	260	180	180	160	120	65	7×¢4.5	$\phi 4.5$	TE-K22M6	2
18.5	LF-350KA	FIL000070	2	100	260	180	180	160	120	65	7×¢4.5	ϕ 4.5	TE-K22M6	2

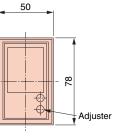
Three-Phase 400 V Class

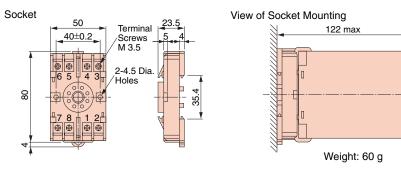
Motor Capacity	Model	Code No.	Qty.	Rated Current					nsions nm)				Terminal	Weight
(kW)				(A)	А	В	С	D	E	F	G	Н		(kg)
0.2	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.5
0.4	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.5
0.75	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	ϕ 4.5	TE-K5.5M4	0.5
1.5	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.5
2.2	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	ϕ 4.5	TE-K5.5M4	0.5
3.7	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	ϕ 4.5	TE-K5.5M4	0.5
5.5	LF-320KB	FIL000072	1	20	140	100	100	90	70	45	7×¢4.5	ϕ 4.5	TE-K5.5M4	0.6
7.5	LF-320KB	FIL000072	1	20	140	100	100	90	70	45	7×¢4.5	ϕ 4.5	TE-K5.5M4	0.6
11	LF-335KB	FIL000073	1	35	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.8
15	LF-335KB	FIL000073	1	35	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.8
18.5	LF-345KB	FIL000074	1	45	260	180	180	160	120	65	7×¢4.5	<i>ф</i> 4.5	TE-K22M6	2


Isolator (Insulation Type DC Transmission Converter)




Cable Length · 4 to 20 mA: within 100 m


• 0 to 10 V: within 50 m


Dimensions (mm)

Weight: 350 g

Performance

- (1) Allowance
- (2) Temperature Fluctuation
- (3) Aux. Power Supply Fluctuation $\pm 0.1\%$ of output span (at $\pm 10\%$ of aux. power supply)
- (4) Load Resistance Fluctuation
- (5) Output Ripple
- (6) Response Time
- (7) Withstand Voltage
- (8) Insulation Resistance
- ±0.25% of output span (ambient temp.: 23°C) $\pm 0.25\%$ of output span (at $\pm 10^{\circ}$ C of ambient temperature)

- $\pm 0.05\%$ of output span (in the range of load resistance)
- $\pm 0.5\%$ P-P of output span
 - 0.5 s or less (time to settle to $\pm 1\%$ of final steady value)
 - 2000 Vac for 60 s (between all terminals and enclosure)
 - 20 M Ω and above (using 500 Vdc megger between each terminal and enclosure)

Product Line

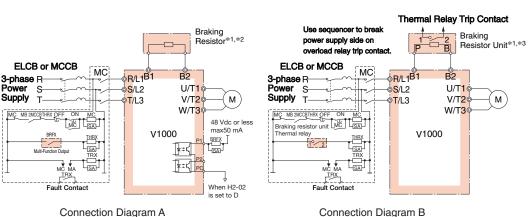
Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	0 to 10 V	0 to 10 V	100 Vac	CON 000019.25
DGP2-4-8	0 to 10 V	4 to 20 mA	100 Vac	CON 000019.26
DGP2-8-4	4 to 20 mA	0 to 10 V	100 Vac	CON 000019.35
DGP2-3-4	0 to 5 V	0 to 10 V	100 Vac	CON 000019.15
DGP3-4-4	0 to 10 V	0 to 10 V	200 Vac	CON 000020.25
DGP3-4-8	0 to 10 V	4 to 20 mA	200 Vac	CON 000020.26
DGP3-8-4	4 to 20 mA	0 to 10 V	200 Vac	CON 000020.35
DGP3-3-4	0 to 5 V	0 to 10 V	200 Vac	CON 000020.15

Braking Resistor, Braking Resistor Unit

Base device selection on motor capacity.

Braking Resistor with Fuse [CF120-B579 series]

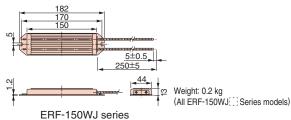
Braking Resistor Unit [LKEB series]



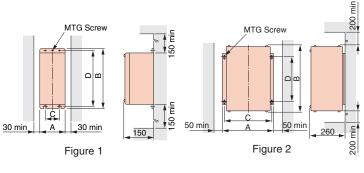
Connection Diagram

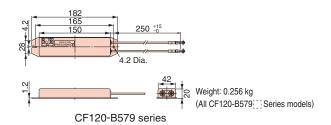
Set parameter L8-01 to 1 (resistor overheat protection enabled). And, set one of the multi-function digital output terminals (H2-___) to D (braking resistor fault). With this setting, A sequence in which the power supply will be shut off is required.

(When using a braking resistor with fuse, an external sequence is not required)


used in this case

Connection Diagram A


- *1: Disable Stall Prevention during deceleration by setting L3-04 (Stall Prevention Note: 1. For connections of the separate type braking unit (CDBR type) without Selection during Deceleration) to 0 (disabled) or 3 (stall prevention with braking resistor) when using a Braking Resistor or Braking Resistor Unit. The motor may not stop within the deceleration time if this setting is not changed.
- *2: Set L8-01 to 1 to enable braking resistor overload protection in the drive when using ERF-type resistors.
- *3: Be sure to protect non-Yaskawa braking resistors by thermal overload relay.


Dimensions (mm)

Braking Resistor

Braking Resistor Unit

using the built-in braking transistor, connect the B1 terminal of the drive to

the + terminal of the braking resistor unit and connect the - terminal of the

drive to the - terminal of the braking resistor unit. The B2 terminal is not

2. Multiple braking resistors should be connected in parallel.

Braking Resistor Dimensions (mm) Allowable Average Neigh Unit Model MTG Power Consumption Figure А в С D (kg) LKEB-(W) Screw 20P7 105 275 50 260 M5×3 30 1 3 21P5 130 350 75 335 M5×4 4.5 60 1 22P2 130 350 75 335 $M5 \times 4$ 89 200 V Class 1 4.5 23P7 130 350 75 335 $M5 \times 4$ 150 1 5 25P5 1 250 350 200 335 $M6 \times 4$ 7.5 220 27P5 1 250 350 200 335 $M6 \times 4$ 8.5 300 2011 266 543 246 340 $M8 \times 4$ 10 440 2 2015 2 356 543 336 340 $M8 \times 4$ 15 600 40P7 1 105 275 50 260 $M5 \times 3$ 3 30 41P5 130 350 75 335 $M5 \times 4$ 4.5 60 1 42P2 130 350 $M5 \times 4$ 45 89 75 335 1 Class 43P7 1 130 350 75 335 $M5 \times 4$ 5 150 7.5 45P5 1 250 350 200 335 $M6 \times 4$ 220 400 V 47P5 1 250 350 200 335 $M6 \times 4$ 8.5 300 4011 2 350 412 330 325 M6×4 16 440 4015 2 350 412 330 325 M6×4 18 600 4018 2 446 543 426 340 $M8 \times 4$ 19 740

Standard Specifications and Applications

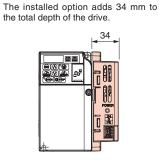
Three/Single-Phase 200 V Class

		V1(000		Braking	g Re	esistor (I	Duty Fa	ctor: 3% E	ED, 10 s n	nax.	.)*1			Min*2				
Max. Motor	ND/	Thurse Diverse	Oinela Dhasa		No F	use	;			With	Fus	e		(Duty F	actor: 10%	ED,	10 s m	ax.)*1	Connectable
Capacity (kW)	HD/	Three-Phase CIMR-VA2A	CIMR-VABA	Model ERF-150WJ	Resistance (Ω)	Qty.	Diagram	Braking Torque*3 (%)	Model CF120-B579	Resistance (Ω)	Qty.	Diagram	Braking Torque*3 (%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque*3 (%)	Resistor (Ω)
0.1	HD	0001	0001	401	400	1	A	220	А	400	1	A	220	40P7	70W 750Ω	1	В	220	300
0.2	ND HD	0001 0002	0001 0002	401	400	1	A	220	А	400	1	А	220	40P7	70W 750Ω	1	В	125	300
0.4	ND	0002	0002	401	400	4		110	А	400	1	A	110	40P7	70W 750Ω	1	в	65	300
0.4	HD	0004	0003	201	200		A	220	В	200		A	220	20P7	70W 200Ω	'	Б	220	200
0.75	ND HD	0004	0003 0006	201	200	1	A	125	В	200	1	A	125	20P7	70W 200Ω	1	В	125	200 120
1.1	ND	0006	0006	201	200	4	_	85	В	200	4	_	85	20P7	70W 200Ω	4	в	85	120
1.1	HD	0008	-	101	100		A	150	С	100	1	A	150	21P5	260W 100Ω	1	Б	150	60
1.5	ND	0008	-	101	100	1	A	125	с	100	1	A	125	21P5	260W 100Ω	1	в	125	60
1.5	HD	0010	0010	101	100		A	120	C	100		A	125	2155	20010 10022		D	125	00
2.2	ND HD	0010	0010 0012	700	70	1	A	120	D	70	1	A	120	22P2	260W 70Ω	1	в	120	60
	ND	0012	0012											22P2	260W 70Ω			90	60
3.0	HD	0012	_	620	62	1	A	100	E	62	1	A	100	23P7	390W 40Ω	1	В	150	32
	ND	0018	-																
3.7	HD	0020	0018	620	62	1	A	80	E	62	1	A	80	23P7	390W 40Ω	1	В	125	32
	ND	0020	-	-	-	-	-	-	_	-	_	-	-	23P7	390W 40Ω		_	85	32
5.5	HD	0030	_	_	_	-	-	-	_	_	_	_	_	25P5	520W 30Ω	1	В	115	9.6
7.5	ND	0030	-	-	-	-	-	-	-	-	-	-	-	0705	70014 000		_	105	
7.5	HD	0040	-	-	-	-	-	-	_	_	-	-	-	27P5	780W 20Ω	1	В	125	9.6
11	ND	0040	-	-	-	-	-	-	-	-	-	-	-	0011	040014 10.00	4	Б	105	0.0
11	HD	0056	—	-	-	-	-	—	_	-	-	—	-	2011	2400W 13.6Ω	1	В	125	9.6
15	ND	0056	-	-	-	-	-	-	_	-	-	-	-	2015	3000W 10Ω	1	в	125	9.6
15	HD	0069	-	-	-	-	-	_	-	-	-	_	-	2013	000000 1022			120	9.0
18.5	ND	0069	-	-	-	-	-	-	_	—	-	-	-	2015	3000W 10Ω	1	В	100	9.6

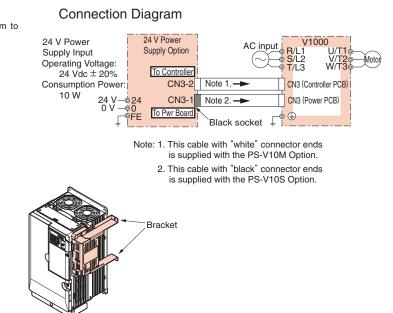
Three-Phase 400 V Class

		V1000		Braking	g Re	esistor (I	Duty Fa	ctor: 3% E	ED, 10 s n	nax.)*1			Braking Res	sisto	r Unit		Min*2
Max. Motor	ND/	Three-Phase		No F	use	;			With I	Fus	e		(Duty Factor: 10% ED, 10 s max.)*1					Connectable
Capacity (kW)	HD	CIMR-VA4A	Model ERF-150WJ	Resistance (Ω)	Qty.	Diagram	Braking Torque* ³ (%)	Model CF120-B579	Resistance (Ω)	Qty.	Diagram	Braking Torque ^{*3} (%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque* ³ (%)	Resistor (Ω)
0.2	HD	0001	751	750	1	Α	230	F	750	1	А	230	40P7	70W 750Ω	1	В	230	750
0.4	ND HD	0001	751	750	1	А	230	F	750	1	А	230	40P7	70W 750Ω	1	В	230	750
0.75	ND HD	0002	751	750	1	А	130	F	750	1	А	130	40P7	70W 750Ω	1	в	130	750 510
1.5	ND HD	0004 0005	751 401	750 400	1	А	70 125	F	750 400	1	А	70 125	40P7 41P5	70W 750Ω 260W 400Ω	1	В	70 125	510 240
2.2	ND HD	0005	301	300	1	А	115	н	300	1	А	115	42P2	260W 250Ω	1	в	135	240 200
3.0	ND HD	0007	401	400	2	А	125	J	250	1	А	100	42P2 43P7	260W 250Ω 390W 150Ω	1	в	100 150	200 100
3.7	ND HD	0009 0011	401	400	2	А	105	J	250	1	А	83	43P7	390W 150Ω	1	В	135	100
5.5	ND HD	0011 0018	201	200	2	A _	135 —	J —	250 —	2	A _	105 -	45P5	520W 100Ω	1	В	135	100 32
7.5	ND HD	0018	-		-	-	-	-	-	-	-	-	47P5	780W 75Ω	1	в	130	32
11	ND HD	0023	-	-	-	-	-	-	-	-	-	-	4011	1040W 50Ω	1	в	135	32 20
15	ND HD	0031	-		-	-	-	-	-	-	_	-	4015	1560W 40Ω	1	в	125	20
18.5	ND	0038	_	_	-	_	-	_	-	-	—	-	4018	4800W 32Ω	1	В	125	20

*1: Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.
*2: The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.
*3: Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking unit and braking resistor. If the braking torque exceeds the value shown in the table, a braking resistor of a higher capacity must be selected. Note: If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.

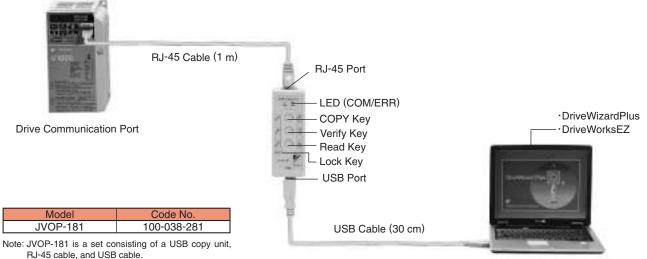

2

24 V Power Supply


The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only. Note: Parameter settings can be accessed but cannot be changed

when the drive is operating solely from this power supply.

The mounting support bracket is required for NEMA Type 1. If these supports are not used, the design is considered "Open Type."


Drive with PS-V10M

Voltago Class	Model	24 V Pow	ver Supply	Bra	cket	
Voltage Class	CIMR-VA	Model	Code No.	Model	Code No.	
	2A0001B					
	2A0002B	PS-V10S	100-038-701	EZZ020639A	100-039-821	
	2A0004B					
	2A0006B					
	2A0008B					
200 V Class	2A0010B	PS-V10S	100-038-701	EZZ020639B	100-039-822	
(Three-Phase)	2A0012B	P5-V105	100-036-701	EZZ020039B	100-039-022	
(Three-Phase)	2A0018B					
	2A0020B					
	2A0030F	PS-V10M	100-038-702	EZZ020639B	100-039-822	
	2A0040F	P5-V 10IVI	100-030-702	EZZ020039B	100-039-022	
	2A0056F		100-038-702	EZZ020639C	100-039-823	
	2A0069F	PS-V10M	100-036-702	EZZ020039C	100-039-023	
	BA0001B					
	BA0002B	PS-V10S	100-038-701	EZZ020639A	100-039-821	
200 V Class	BA0003B					
(Single-Phase)	BA0006B					
(Single-Fnase)	BA0010B	PS-V10S	100-038-701	EZZ020639B	100-039-822	
	BA0012B	F 3-V 103			100-039-022	
	BA0018B					
	4A0001B	PS-V10S	100-038-701	EZZ020639A	100-039-821	
	4A0002B	F3-V103	100-036-701	EZZUZU039A	100-039-021	
	4A0004B					
	4A0005B					
400 V Class	4A0007B	PS-V10S	100-038-701	EZZ020639B	100-039-822	
(Three-Phase)	4A0009B					
(Three-Filase)	4A0011B					
	4A0018F					
	4A0023F	PS-V10M	100-038-702	EZZ020639B	100-039-822	
	4A0031F					
	4A0038F	PS-V10M	100-038-702	EZZ020639C	100-039-823	

USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC.

Connection

PC USB Connector Note: No USB cable is needed to copy parameters to other drives.

Specifications

Item	Specifications
Port	LAN (RJ-45) : Connect to the drive.
Port	USB (Ver.2.0 compatible) : Connect to the PC as required.
Power Supply	Supplied from a PC or the drive
Operating System	Windows2000/XP
Memory	Memorizes the parameters for one drive.
Dimensions	30 (W) × 80 (H) × 20 (D) mm
Included	RJ-45 cable (1 m), USB cable (30 cm)

Note: 1. Drives must have identical software versions to copy parameters settings.

2. Requires a USB driver available. Contact your YASKAWA representative.

3. Parameter copy function disabled when connected to a PC.

PC Cable (Model: WV103)

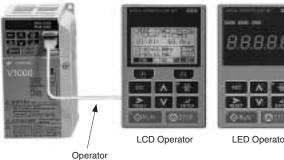
Cable to connect the drive to a PC with DriveWizard Plus or DriveWorksEZ installed.

Connection

Drive Communication Port

- Note: 1. The USB Copy Unit is required to when using a USB cable to connect the drive to a PC.
 - 2. DriveWizard Plus is a PC software package for managing parameters and functions in Yaskawa drives. To order this software, contact your YASKAWA representative. DriveWorksEZ is the software for creating custom application programs for the drive through visual programming. To order this software, contact our sales representative.

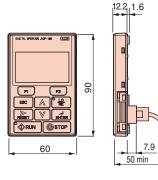
Model	Code No.
WV103	WV103

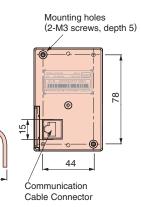

Specifications

Item	Specifications
Connector	DSUB9P
Cable Length	3 m

Remote Digital Operator / Operator Extension Cable

Allows for remote operation. Includes a Copy function for saving drive settings.


Connection



Extension Cable

LED Operator

Dimensions (mm)

Remote Digital Operator

Item	Model	Code No.
LCD Operator	JVOP-180	100-041-022
LED Operator	JVOP-182	100-043-155

Operator Extension Cable

Model	Code No.
WV001 (1 m)	WV001
WV003 (3 m)	WV003

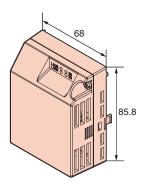
Note: Never use this cable for connecting the drive to a PC. Doing so may damage the PC.

This bracket is required to mount the LCD or LED operator outside an enclosure panel.

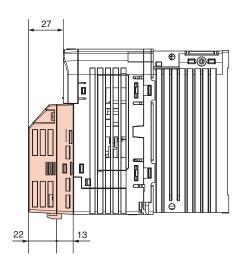
Item	Code No. (Model)	Installation	Notes
Installation Support Set A	100-039-992 (EZZ020642A)	M4×10 truss head screw M3×6 pan head screw	For use with holes through the panel
Installation Support Set B	100-039-993 (EZZ020642B)	M4 nut M3×6 pan head screw	For use with panel mounted threaded studs

Note: If weld studs are on the back of the panel, use the Installation Support Set B.

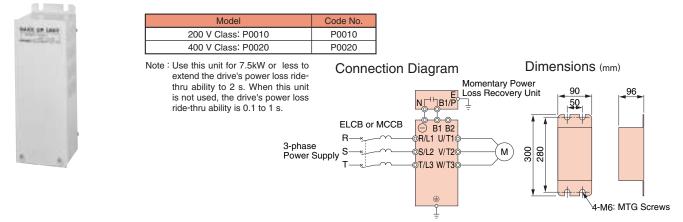
Communication Interface Unit


Name	Model	Code No.
MECHATROLINK-II Option	SI-T3/V	100-049-420
MECHATROLINK-III Option*	-	-
CC-Link Option	SI-C3/V	100-038-064
DeviceNet Option	SI-N3/V	100-039-409
CompoNet Option	SI-M3/V	100-060-128
PROFIBUS-DP Option	SI-P3/V	100-038-409
CANopen Option	SI-S3/V	100-038-739

*: Available soon

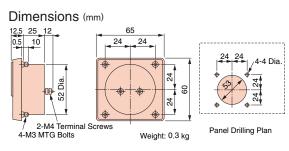

Example of interface installation

Dimensions (mm)


The interface increases total drive dimensions by 27 mm.

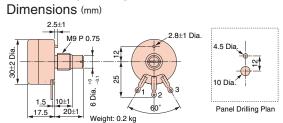
Example: CIMR-VA2A0004

Momentary Power Loss Recovery Unit (0.1 to 7.5 kW for 200 V/400 V class)



Frequency Meter/Current Meter

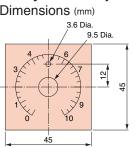
Model	Code No.
Scale-75 Hz full-scale: DCF-6A	FM000065
Scale-60/120 Hz full-scale: DCF-6A	FM000085
Scale-5 A full-scale: DCF-6A	DCF-6A-5A
Scale-10 A full-scale: DCF-6A	DCF-6A-10A
Scale-20 A full-scale: DCF-6A	DCF-6A-20A
Scale-30 A full-scale: DCF-6A	DCF-6A-30A
Scale-50 A full-scale: DCF-6A	DCF-6A-50A


Note: DCF-6A is a 3 V, 1 mA frequency meter. The user may want to additionally install a frequency potentiometer to control output (shown below) or set parameter H4-02 to the appropriate output level (0 to 3 V).

Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
RV30YN20S 2 kΩ	RH000739
RV30YN20S 20 kΩ	FM000850

Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer Dimensions (mm)



Dimens		
	Code No.	Model
	HLNZ-0036	CM-3S
16.1 7.5		
C.		

Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

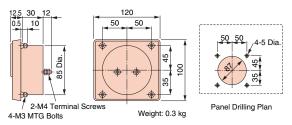
		D
Model	Code No.	
NPJT41561-1	NPJT41561-1	
		Ĩ

23

26.1

32.8

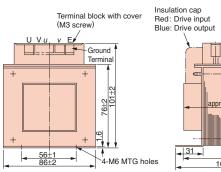
Shaft

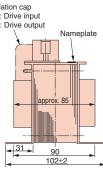

6 Dia.

Output Voltage Meter

Model	Code No.
Scale-300 V full-scale (Rectification Type Class 2.5) : SCF-12NH	VM000481
Scale-600 V full-scale (Rectification Type Class 2.5) : SCF-12NH	VM000502

Dimensions (mm)


Potential Transformer



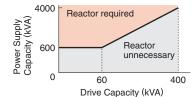
Model	Code No.
600 V meter for voltage transformer UPN-B 440/110 V (400/100 V)	100-011-486

For use with a standard voltage regulator. A standard voltage regulator may not match the drive output voltage. Select a regulator specifically designed for the drive output (100-011-486), or a voltmeter that does not use a transformer and offers direct read out.

Dimensions (mm)

Weight: 2.2 kg

Application Notes


Selection

Installing a Reactor

An AC or DC reactor can be used for the following:

- · to suppress harmonic current.
- to smooth peak current that results from capacitor switching.
- \cdot when the power supply is above 600 kVA.
- \cdot Use an AC reactor when also connecting a thyristor

converter to the same power supply system, regardless of the conditions of the power supply.

Drive Capacity

Make sure that the motor's rated current is less than the drive's output current. When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current.

Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

Emergency Stop

When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

Options

She B1, B2, -, +1, and +2 terminals are used to connect optional devices. Connect only V1000-compatible devices.

Repetitive Starting/Stopping

Cranes (Hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the IGBTs is about 8 million start and stop cycles with a 4 kHz carrier frequency and a 150% peak current.

Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.

For crane-type applications taking the inching function in which the motor is quickly started and stopped, Yaskawa recommends the following to ensure motor torque levels and lower the drive:

- Select a large enough drive so that peak current levels remain below 150%.
- · The drive should be one frame size larger than the motor.

Installation

Enclosure Panels

Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, oil mist, corrosive gas, and flammable gas, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details.

Installation Direction

The drive should be installed upright as specified in the manual.

Settings

If using Open Loop Vector Control designed for permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.

Upper Limits

Because the drive is capable of running the motor at up to 400 Hz, be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz.

DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD²/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/ decel times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, increase the capacity of the drive.

Compliance with Harmonic Suppression Guidelines

V1000 conforms to strict guidelines in Japan covering harmonic suppression for power conversion devices. Defined in JEM-TR201 and JEM-TR226 and published by the Japan Electrical Manufacturers' Association, these guidelines define the amount of harmonic current output acceptable for new installation. Contact your YASKAWA representative.

General Handling

Wiring Check

Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive.

Magnetic Contactor Installation

Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

Inspection and Maintenance

After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock.

The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.

Transporting the Drive

Never steam clean the drive.

During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals.

Peripheral Devices

Installing a Ground Fault Interrupter or an MCCB Install an MCCB or a ground fault interrupter recommended by Yaskawa to the power supply side of the drive to protect internal circuitry. The type of MCCB needed depends on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. Those using a ground fault interrupter other than those recommended in this catalog, use one fitted for harmonic suppression measures (one designed specifically for drives). The rated current of the ground fault interrupter must be 200 mA or higher per drive unit. Select an MCCB with a rated capacity greater than the short-circuit current for the power supply. For a fairly large power supply transformer, a fuse can be added to the ground fault interrupter or MCCB in order to handle the short-circuit current level.

Magnetic Contactor for Input Power

Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary.

The MC should be wired so that it opens when a fault output terminal is triggered.

Even though an MC is designed to switch following a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be absolutely sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

Magnetic Contactor for Motor

As a general principle, the user should avoid opening and closing the magnetic contactor between the motor and the drive during run. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass only after the drive is stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor.

Use an MC with delayed release if momentary power loss is a concern.

Motor Thermal Over Load Relay Installation

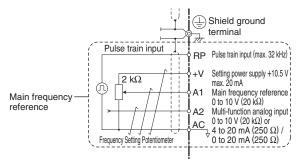
Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multipole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter (L1-01 = 0), and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate.

When a high carrier frequency and long motor cables are used, nuisance tripping of the thermal relay may occur due to increased leakage current. To avoid this, reduce the carrier frequency or increase the tripping level of the thermal overload relay.

Improving the Power Factor

Installing a DC or AC reactor to the input side of the drive can help improve the power factor.

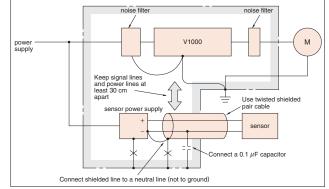
Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because harmonic contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent.


Radio Frequency Interference

Drive output contains harmonic contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor.

Wire Gauges and Wiring Distance

Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used.


The optional LCD operator requires a proprietary cable to connect to the drive. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m, and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield.

Counteracting Noise

Because V1000 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following point in mind when considering how to reduce motor noise:

- Lowering the carrier frequency (C6-02) minimizes the effects of noise.
- A line noise filter can be effective in reducing the affects on AM radio frequencies and poor sensor performance.
 See "Options and Peripheral Devices" on page 28.
- Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise form the drive power lines.

<Provided by JEMA>

Leakage Current

Harmonic leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current.

	Problem	Solution
Ground Leakage Current	MCCB is mistakenly triggered	 Lower the carrier frequency set to parameter C6-02. Try using a component designed to minimize harmonic distortion for the MCCB such as the NV series by Mitsubishi.
Current Leakage Between Lines	Thermal relay connected to the external terminals is mistakenly triggered by harmonics in the leakage current	 Lower the carrier frequency set to parameter C6-02. Use the drive's built-in thermal motor protection function.

The following table shows the guidelines for the set value of the carrier frequency relative to the wiring distance between the drive and the motor when using V/f control.

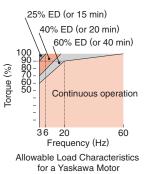
When Open Loop Vector Control or PM Open Loop Vector Control is used and the wiring distance is 50 m to 100 m, set the carrier frequency to 2 kHz.

Wiring Distance*	50 m or less	100 m or less	Greater than 100 m
C6-02:	1 to Auto	1, 2, 7 to Auto	1, 7 to Auto
Carrier Frequency Selection	(15 kHz or less)	(5 kHz or less)	(2 kHz or less)

*: When a single drive is used to run multiple motors, the length of the motor cable should be calculated as the total distance between the drive and each motor.

When the wiring distance exceeds 100 m, use the drive observing the following conditions.

- $\cdot \text{To}$ start a coasting motor
 - a) Use the current detection type (b3-24=0) when using the speed search function, or
 - b) Set the DC injection braking time at start (b2-03=0.01 to 10.00 sec) to stop a coasting motor and restart it.


More than one synchronous motor cannot be connected to a single drive. The maximum wiring distance between the drive and the synchronous motor must be 100 m.

Notes on Motor Operation

Using a Standard Motor

Low Speed Range

There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load

torque should be reduced accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa standard motor. A motor designed specifically for operation with a drive should be used when 100% continuous torque is needed at low speeds.

Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances.

High Speed Operation

Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz. Contact Yaskawa for consultation.

Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

Vibration and Shock

V1000 lets the user choose between high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation. Keep the following points in mind when using high carrier PWM: (1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shockabsorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.

(2) Any imperfection on a rotating body increases vibration with speed

Caution should be taken when operating above the motor rated speed.

Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated r/min (i.e., above 60 Hz), however, can create unpleasant motor noise.

Using a Synchronous Motor

- Please contact us for consultation when using a synchronous motor not already approved by Yaskawa.
- Even when the power has been shut off for a drive running a PM motor, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:
 - Applications where the machine can still rotate even though the drive has fully stopped should have a low voltage manual load switch installed to the output side of the drive. (Yaskawa recommends the AICUT LB Series by AICHI Electric Works Co., Ltd.)
 - Do not apply to a load that could potentially rotate the motor faster than the maximum allowable r/min even when the drive has been shut off.
 - Wait at least one minute after opening the low voltage manual load switch on the output side before inspecting the drive or performing and maintenance.
 - Do not open a close the low voltage manual load switch while the motor is running, as this can damage the drive.
 - To close the low voltage manual load switch connected to a coasting motor, first turn on the power to the drive and make sure that the drive has stopped.
- Synchronous motors cannot be started directly from line power. Applications that requiring line power to start should use an induction motor with the drive.
- A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.
- At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.
- Uses derated torque of 50% less than starting torque. Set up the motor with the drive after verifying the 53

starting torque, allowable load characteristics, impact load tolerance, and speed control range.

- Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20% speed.
- There is no torque control available, and torque limits cannot be set. Consequently, synchronous motors are not appropriate for applications that operate at low speeds (less than 10% of the rated speed) or experience sudden changes in speed. Such applications are better suited for induction motors or servo drives.
- The allowable load inertia moment is 50 times less than the motor inertia moment. Contact Yaskawa concerning applications with a larger inertia moment.
- When using a holding brake, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Not for use with conveyor, transport, or hoist type applications.
- To restart a coasting motor rotating at over 120 Hz, use the Short Circuit Braking* function to first bring the motor to a stop. Short Circuit Braking requires a special braking resistor.

Speed Search can be used to restart a coasting motor rotating slower than 120 Hz. If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking and then restarted.

*: Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor.

Applications with Specialized Motors

Multi-pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regenerative overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

Submersible Motor

Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

Explosion-proof Motor

Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.

Geared Motor

Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

Single-phase Motor

Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes excessive current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. V1000 is for use only with 3-phase motors.

Uras Vibrator

Uras vibrator is a vibration motor that gets power from centrifugal force by rotating unbalanced weights on both ends of the shaft. Make the following considerations when selecting a drive for use with an Uras vibrator:

- Uras vibrator should be used within the drive rated frequency
- (2) Use V/f Control
- (3) Increase the acceleration time five to fifteen times longer than would normally be used due to the high amount of load inertia of an Uras vibrator Note: A drive with a different capacity must be selected if the acceleration time is less than 5 s.
- (4) Drive may have trouble starting due to undertorque that results from erratic torque (static friction torque at start)

Motor with Brake

Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

Power Driven Machinery (decelerators, belts, chains, etc.)

Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

	Name	Feature		Capacity Range (kW) 0.1 1 10 100 300 630	Outline
			Three-Phase 200 V Class	0.1	Ultra-small body enables side-by-side installation. Compact design of enclosure panel Easy operation with the Potentiometer Option Unit The noise-suppressing Swing PWM system reduces harsh sound.
	J1000	Compact V/f Control AC Drive	Single-Phase 200 V Class	0.1 2.2	The full-range fully-automatic torque boost function provides high torque output. (100%/1.5 Hz, 150%/3 Hz) The Stall Prevention function and the momentary power loss ride-thru ensure continuous
			Three-Phase 400 V Class	0.2 5.5	operation, regardless of load/power supply fluctuations or momentary power loss. The Overexcitation braking function enables rapid braking, without using a braking resistor.
			Three-Phase 200 V Class	0.1	Small body and high performance (Current vector control) New technology for driving synchronous motors (IPMM/SPMM) as well as induction motors
	V1000	Compact Vector Control AC Drive	Single-Phase 200 V Class	0.1 3.7	 High starting torque: 200%/0.5 Hz* Torque limit function * At Heavy Duty rating, for induction motors with 3.7 kW or lower
			Three-Phase 400 V Class	0.2 18.5	Application-specific function selection for simplified optimum setup Easy maintenance using the detachable terminal block with the parameter backup function
	A1000	Advanced Vector	Three-Phase 200 V Class	0.4	New technology for driving synchronous motors (IPMM/SPMM) as well as induction motors High starting torque IPM motor without a motor encoder: 0 r/min 200% torque
urpose	A1000	Control AC Drive	Three-Phase 400 V Class	0.4 630	Application preset function selection for simplified optimum setup Easy maintenance using the detachable terminal block with the parameter backup function
General Purpose	Varispeed G7	General-purpose Inverter With G7 Advanced Vector Control Minimal Noise	Three-Phase 200 V Class	0.4	The 400 V class uses 3-level control for a more perfect output waveform. Open Loop Vector control ensures 150% or higher torque during operation at 0.3 Hz. Flux Vector Control provides a high torque of 150% at zero speed.
			Three-Phase 400 V Class	0.4 300	 Easy maintenance and inspection using the detachable control circuit terminals and the detachable cooling fan. Software for various applications (for crane, hoist, etc.) The Auto-Tuning function upgrades all types of general motors to be compatible with high-performance drives.
	Varispeed AC	Environmentally Friendly Motor Drives	Three-Phase 200 V Class Three-Phase 400 V Class	5.5 4 5 5.5 7 5	The world's first matrix converter system that outputs AC voltage from AC voltage, and includes power supply regeneration capabilities. The simple, highly-efficient drive can remarkably reduce power
		Matrix Converter	Three-Phase 200 V Class	0.4	supply harmonics, without using peripherals. Grade higher than IE3 efficiency class saves energy during operation. V1000 drives combined with compact ECOiPM motors make more compact and lighter drive systems.
	ECOiPM Drive	Energy Efficiency Drives	Three-Phase 400 V Class	0.4 15	 Less maintenance because bearing grease life is approx. three times longer compared to use with induction motors. Improved reliability with elimination of an encoder of precision device.
	V1000pico Drive	Super Compact and Environmentally Drives	Three-Phase 200 V Class	0.1 3.7	 V1000 drives combined with super compact V1000pico motors make more compact and lighter drive systems. Applicable in locations subject to water jets or abrasive powder with its protective enclosure rated IP65 or higher. Improved reliability with elimination of an encoder of precision device. Use of V1000 drives, which can control not only induction motors but also synchronous motors, brings the uniformity of your stock.
Special Use		A Elevator Applications Three-Phase 400 V Class		1.5	 Cutting-edge drive technology allows L1000A to run a newly installed gearless synchronous motor, or a refurbished geared induction motor. This minimizes equipment required for your application. Interfaces to match gearless, synchronous motors and every type of absolute encoder. Even without a load sensor, high-performance torque compensation
	L1000A		1.5	 and high-resolution absolute encoder eliminate rollback when the brake is released. Output interrupt Satisfies safety requirements and Ensures a reliable elevator system. Rescue Operation switches to backup battery or UPS in case of a power outage. All standard models are compliant with the Europe's RoHS directive. 	
	VS-646HF5	High-frequency Inverter Drives	Three-Phase 200 V Class	2.2 7.5	• Provides a high rotation speed of 420,000 r/min in combination with a high-speed (2-pole) motor

* Some models not yet available.

Global Service Network

Region	Service Area	Service Location	Service Agency	Telephone/Fax
North America	U.S.A.	Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina	1) YASKAWA AMERICA INC.	Headquarters ☎ +1-847-887-7000 FAX +1-847-887-7370
	Mexico	Mexico City	@PILLAR MEXICANA. S.A. DE C.V.	☎+52-555-660-5553FAX+52-555-651-5573
South	South America	São Paulo	6 YASKAWA ELÉTRICO DO BRASIL LTD.A.	☎ +55-11-3585-1100 FAX +55-11-5581-8795
America	Colombia	Bogota	ØVARIADORES LTD.A.	☎ +57-1-428-4225 FAX +57-1-428-2173
Europe	Europe, South Africa	Frankfurt	5 YASKAWA EUROPE GmbH	 ☎ +49-6196-569-300 FAX +49-6196-569-398
	Japan	Tokyo, offices nationwide	YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	☎ +81-3-5402-4502 FAX +81-3-5402-4580
			YASKAWA ELECTRIC ENGINEERING CORPORATION (After-sales service)	☎ +81-4-2931-1810 FAX +81-4-2931-1811
	South Korea	Seoul	[®] YASKAWA ELECTRIC KOREA CORPORATION	☎ +82-2-784-7844 FAX +82-2-784-8495
			YASKAWA ENGINEERING KOREA Co.	 ☎ +82-2-3775-0337 FAX +82-2-3775-0338
	China	Beijing, Guangzhou, Shanghai	1 YASKAWA ELECTRIC CHINA Co., Ltd.	☎ +86-21-5385-2200 FAX +86-21-5385-3299
Asia	Taiwan	Taipei	YASKAWA ELECTRIC TAIWAN Co.	☎ +886-2-2502-5003 FAX +886-2-2505-1280
	Singapore Singapore Thailand Bangkok	pore Singapore	PASKAWA ELECTRIC (SINGAPORE) Pte. Ltd.	☎ +65-6282-3003 FAX +65-6289-3003
			YASKAWA ENGINEERING ASIA-PACIFIC Pte. Ltd.	☎ +65-6282-1601 FAX +65-6382-3668
		()YASKAWA ELECTRIC (THAILAND) Co., Ltd.	☎ +66-2693-2200 FAX +66-2693-4200	
	India	Mumbai	BLARSEN & TOUBRO LIMITED	Headquarters +91-22-67226200 +91-22-27782230 FAX +91-22-27783032
Oceania	Australia	Sydney (HQ) Melbourne	BROBOTIC AUTOMATION Pty. Ltd.	Headquarters

DRIVE CENTER (INVERTER PLANT)

2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan Phone: 81-930-25-3844 Fax: 81-930-25-4369 http://www.yaskawa.co.jp

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone: 81-3-5402-4502 Fax: 81-3-5402-4580 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC. 2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: (800) YASKAWA (927-5292) or 1-847-887-7000 Fax: 1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA. Avenda Fagundes Filho, 620 Bairro Saude, São Paulo, SP04304-000, Brasil Phone: 55-11-3585-1100 Fax: 55-11-5581-8795 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstrasse 185, 65760 Eschborn, Germany Phone: 49-6196-569-300 Fax: 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC UK LTD.

1 Hunt Hill Orchardton Woods, Cumbernauld, G68 9LF, United Kingdom Phone: 44-1236-735000 Fax: 44-1236-458182 http://www.yaskawa.co.uk

YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg., 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea Phone: 82-2-784-7844 Fax: 82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-01, New Tech Park, 556741, Singapore Phone: 65-6282-3003 Fax: 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC CHINA CO., LTD. 12F, Carlton Bldg., No.21 HuangHe Road, HuangPu District, Shanghai 200003, China Phone: 86-21-5385-2200 Fax: 86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC CHINA CO., LTD. BEIJING OFFICE

Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone: 86-10-8518-4086 Fax: 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, 104, Taiwan Phone: 886-2-2502-5003 Fax: 886-2-2505-1280

YASKAWA ELECTRIC INDIA PRIVATE LIMITED

#17/A Electronics City, Hosur Road Bangalore 560 100 (Karnataka), India Phone: 91-80-4244-1900 Fax: 91-80-4244-1901 http://www.yaskawaindia.in

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply Specifications are subject to change without notice for ongoing product modifications and improvements. © 2007-2012 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAEP C710606 08F Published in Japan April 2012 07-8 (5)-0 12-1-9